Terryfest 2015, Limoges

ω -limit sets for differential inclusions

Asen L. Dontchev

Mathematical Reviews (AMS) and the University of Michigan

Based on joint work with M. Krastanov and V. Veliov

Supported by NSF Grant DMS-1008341

Motivation: nonsmooth/discontinuous feedback

Arsie, A., Ebenbauer, C., Locating omega-limit sets using height functions. J. Differential Equations 248, 2458–2469 (2010)

 $f: \mathbb{R}^n \to \mathbb{R}^n$ locally Lipschitz continuous.

(1)
$$\dot{x}(t) = f(x(t)), \quad x(0) = x_0,$$

Carathéodory solutions on $[0, +\infty)$: a function $\varphi : [0, +\infty) \to \mathbb{R}^n$ which is absolutely continuous and satisfies (1) for a.e. $t \in [0, +\infty)$.

 ω -limit set $\omega(x_0)$: the collection of points $y \in \mathbb{R}^n$ for each of which there exists a Carathéodory solution $\varphi(\cdot, x_0)$ of (1) which is bounded on $[0, +\infty)$, and a sequence $t_k \to \infty$ such that $\varphi(t_k, x_0) \to y$ as $k \to \infty$.

Theorem (Arsie, A., Ebenbauer (2010).

Assume we are given a closed set $\mathcal{S} \subset R^n$ which contains $\omega(x_0)$ and a function $V: G \to R$ which is continuously differentiable over a neighborhood of \mathcal{S} . Define $\mathcal{U} := \{x \in \mathcal{S} : \dot{V}_f(x) < 0\}$ and assume that $V(\mathcal{S} \setminus \mathcal{U})$ does not contain any open interval. Then the ω -limit set $\omega(x_0)$ is contained in a connected subset of the set $\mathcal{S} \setminus \mathcal{U}$.

Differential inclusion

(2)
$$\dot{x}(t) \in F(t, x(t)), \quad x(0) = x_0$$

STANDING ASSUMPTION. For every $x_0 \in \mathbb{R}^n$ there exist positive reals r and M such that

$$||F(t,x)|| \le M$$
 for every $x \in B_r(x_0)$ and every $t \ge 0$.

 ω -limit set $\omega(x_0)$: nonempty if, e.g., F is either upper semi-continuous with compact convex values or lower semi-continuous, and an appropriate growth condition holds.

The upper Dini directional derivative of a function $V: \mathbb{R}^n \to \mathbb{R}$ at x in the direction I is

$$D^+V(x;I):=\limsup_{h\searrow 0}\frac{V(x+hI)-V(x)}{h}.$$

Localization of the ω -limit set

Theorem.

Let $\mathcal S$ be a closed subset of R^n , $\mathcal U$ be a relatively open subset of $\mathcal S$, $\mathcal G$ be an open set containing $\mathcal S$ and let $Z:=(\mathcal G\setminus\mathcal S)\cup\mathcal U$.

Let $V: G \to R$ be locally Lipschitz and $W: Z \to R$ be lower semicontinuous and suppose that the following conditions hold:

- (B1) For every $\varepsilon > 0$ and for each bounded solution $\varphi(\cdot, x_0)$ of (2) there exists T > 0 such that $\operatorname{dist}(\varphi(t, x_0), \mathcal{S}) < \varepsilon$ for every
- $t \geq T$;
 - (B2) W(x) > 0 for every $x \in \mathcal{U}$;
 - (B3) $\sup_{v \in F(t,x)} D^+V(x;v) \le -W(x)$ for every $x \in Z$;
- (B4) Every open interval contained in $V(S \setminus U)$ has empty intersection with V(U).

Then the set $\omega(x_0)$ is contained in $S \setminus \mathcal{U}$.

Sketch of proof

On the contrary, assume there exists $\bar{x} \in \omega(x_0) \cap \mathcal{U}$. Then prove that there exists

$$c \in V(\bar{x} - \varepsilon, V(\bar{x}) + \varepsilon)$$

for a specially chosen ε (sufficiently small) such that

$${x \in \mathcal{S} + \delta B} \cap K \mid V(x) = c} \subset Z \cup {x \mid W(x) > 0}.$$

Take a sequence $t_k \to \infty$ and estimate $V(\varphi(t))$ from above by $V(\bar{x})$. Then show that

$$V(\varphi(t) < c \text{ for } t \ge t_k + \tau$$

for a specially chosen τ .

Obtain contradiction by using the assumption for W.

THANK YOU!