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Constrained Optimization

X real loc. conv. top. vec. sp., and ∅ 6= C ⊆ X . Given f : C → R
and g : C → R, consider the constrained minimization problem

µ
.

= inf{f (x) : g(x) = 0, x ∈ C}. (P)

The Lagrangian dual problem associated to (P) is

ν
.

= sup
λ∗∈R

inf
x∈C

[f (x) + λ∗g(x)]. (D)

We say: (P) has a (Lagrangian) zero duality gap if µ = ν; (P)
has strong duality if it has a zero duality gap and Problem (D)
admits a solution.
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A continuous-version of SQP

µq
.

= min
{

f (x)
.

=
1
2

∫ 1

0
x>(t)Ax(t)dt : g(x)

.
=

∫ 1

0
e>(t)x(t)dt−1 = 0,

x ∈ C .
= L2

+(]0,1[;Rn)
}
.

Here, A = (aij) is a real symmetric copositive matrix, i. e.,
x>Ax ≥ 0 for all x ∈ Rn

+; e ∈ qi L2
+(]0,1[;Rn) = L2

++(]0,1[;Rn).
It is known {x ∈ L2

+(]0,1[;Rn) : 〈e, x〉 = 1} is a weakly
compact base of L2

+(]0,1[;Rn). Thus, the dual is

sup
λ∈R

inf
x∈L2

+

L(λ, x) =
1
2

∫ 1

0
x(t)>Ax(t) + λ(

∫ 1

0
e(t)>x(t)dt − 1).

(1)
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Introduce, as usual, the Lagrangian

L(γ, λ, x) = γf (x) + λg(x), γ ≥ 0, λ ∈ R.

By setting K .
= {x ∈ C : g(x) = 0}, we obtain (weak duality)

inf
x∈C

L(γ, λ, x) ≤ inf
x∈K

L(γ, λ, x) ≤ γ inf
x∈K

f (x), ∀ γ ≥ 0, ∀ λ ∈ R.

In order to get the equality, we need to find conditions under
which the reverse inequality holds, that is, we must have:

γ(f (x)− µ) + λg(x) ≥ 0 ∀ x ∈ C. (2)

This will imply strong duality once we get γ > 0. Denote
F .

= (f ,g), the sets

F .
= F (C) + R+(1,0), Fµ

.
= F − µ(1,0), (3)

will play an important role in our analysis.
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Then,

(γ, λ) ∈ [cone Fµ]∗ = [cone Fµ]∗ = [cone Fµ]∗ = [Fµ]∗. (4)

Set
LSD

.
=
{
λ ∈ R : (1, λ) ∈ [cone Fµ]∗

}
. (5)

Then, (P) has SD property if, and only if LSD 6= ∅. Hence

LSD ⊆ SD,

where SD is the solution set to the dual problem (D).
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Furthermore, we need the following numbers:

if Ω−+
.

= S−f (µ) ∩ S+
g (0) 6= ∅,

s .
= sup

x∈Ω−+

g(x)

f (x)− µ
∈ ]−∞,0];

if Ω−−
.

= S−f (µ) ∩ S−g (0) 6= ∅,

l .= inf
x∈Ω−−

g(x)

f (x)− µ
∈ [0,+∞[;
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The geometric and topological characterizations of SD:

Theorem: [Cárcamo-FB, 2015]

Consider problem (P) with µ ∈ R. Then, (a), (b) and (c) are
equivalent:
(a) Strong Duality holds for (P), that is

∃ λ∗0 ∈ R : f (x) + λ∗0g(x) ≥ µ, ∀ x ∈ C; (6)

(b) cone(Fµ) ∩ (−R++ × {0}) = ∅ and cone(Fµ) is convex;

(c) cone(Fµ) is convex and exactly one of the following
assertions holds:

(c1) S−
f (µ) = ∅, in which case 0 ∈ LSD;

(c2) Ω−
+ 6= ∅, s < 0, in which case minLSD = −1

s
;

(c3) Ω−
− 6= ∅, l > 0, in which case maxLSD = −1

l
.
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Theorem (continued ...)

Consequently, under condition (a), one obtains

inf
x∈K

f (x) = inf
λ∗0 g(x)≤0

x∈C

f (x); (7)

x̄ is a solution to (P)⇐⇒

 x̄ ∈ C, g(x̄) = 0,
f (x̄) = inf

x∈C
[f (x) + λ∗0g(x)]

(8)

and LSD = SD.
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Remark
We point out that the convexity of cone(Fµ) does imply the
convexity of cone(Fµ) without SD. This is illustrated by the
functions f (x1, x2) = 2x1x2, g(x1, x2) = x1 and C = R2. Then,
µ = 0, F (R2) = {(0,0)} ∪ (R2 \ R× {0}), and so

cone(Fµ) = R2 \ (−R++ × {0}),

which is nonconvex, but cone(Fµ) = R2.

The following result, which is new in the literature, provides a
characterization of strong duality under a Slater-type condition.

Corollary: [Cárcamo-FB, 2015]

Let µ ∈ R and assume that there exist x1, x2 ∈ C such that
g(x1) < 0 < g(x2). Then, cone(Fµ) is convex if, and only if
strong duality holds for (P).
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The case f and g quadratic: C = Rn; F = (f ,g):

Corollary [Opazo-FB, 2014]: Let µ ∈ R

Assume that there exist x1, x2 ∈ Rn st g(x1) < 0 < g(x2). Then,
F (Rn) + R+(1,0) is convex if, and only if SD holds.

Lemma [Opazo-FB, 2014]:

F (Rn) + R+(1,0) is convex if, and only if any of the following
conditions is satisfied:

(C1) FL(ker A ∩ ker B) 6= {0}; FL(u) = (〈a,u〉, 〈b,u〉);

(C2) B 6= 0;

(C3) u ∈ Rn, 〈Bu,u〉 = 0 =⇒ 〈Au,u〉 ≥ 0;

(C4) ∃ u ∈ Rn, 〈Au,u〉 < 0, 〈Bu,u〉 = 0, 〈b,u〉 = 0.

This characterization encompasses the case when the Hessian
of g is non-null, or when g is strictly concave (or convex).
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Corollary [Opazo-FB, 2014]:

F (Rn) + P is convex for all convex cone P ⊆ R2 with int P 6= ∅.

FLORES-BAZÁN, F.; OPAZO, FELIPE, Joint-range convexity
for a pair of inhomogeneous quadratic functions and a
nonstrict version of S-lemma with equality, Submitted.
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KKT optimality conditions

This section deals with some characterizations of the validity of
the KKT optimality conditions for the problem (P). For
simplicity, take X = Rn, and f and g to be Gâteaux
differentiable on Rn. Such characterizations will be derived as a
consequence of our main theorem on SD applied to the
linearized approximation problem defined, given x̄ ∈ C, by

µL
.

= inf
v∈G′(x̄)

∇f (x̄)>v , (9)

where
G′(x̄)

.
=
{

v ∈ T (C; x̄) : ∇g(x̄)>v = 0
}
.

Here, T (C; x̄) stands for the contingent cone of C (or tangent
cone of Bouligand) at x̄ , which is always a closed cone. Set
FL(v)

.
= (∇f (x̄)>v ,∇g(x̄)>v). It is obvious that µL ∈ {−∞,0}.
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In view of Theorem 8, we introduce the following sets:

Ŝ−f (0)
.

={v ∈ T (C; x̄) : ∇f (x̄)>v < 0},

Ŝ+
g (0)

.
={v ∈ T (C; x̄) : ∇g(x̄)>v > 0},

Ω̂−+
.

=Ŝ−f (0) ∩ Ŝ+
g (0), Ω̂−−

.
=Ŝ−f (0) ∩ Ŝ−g (0).

Furthermore, whenever Ω̂−+ 6= ∅ 6= Ω̂−−, we put

ŝ .
= sup

v∈Ω̂−+

∇g(x̄)>v
∇f (x̄)>v

, l̂ .= inf
v∈Ω̂−−

∇g(x̄)>v
∇f (x̄)>v

.

Denote by L(x̄) the set of Lagrange multipliers to (P)
associated to a (not necessarily feasible) point x̄ ∈ C, i. e., the
set of λ∗ ∈ R satisfying (10). When L(x̄) 6= ∅, we say that x̄ is a
KKT point.
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Let x̄ ∈ C. In case ∇g(x̄) = 0, it is not difficult to check that:
µL = 0 if, and only if L(x̄) = R.
µL = −∞ if, and only if L(x̄) = ∅.

Theorem: [Cárcamo-FB, 2015]

Assume that x̄ ∈ C. The following assertions are equivalent:
(a) ∃ λ∗ ∈ R such that

∇f (x̄) + λ∗∇g(x̄) ∈ [T (C; x̄)]∗. (10)

(b) µL = 0 and strong duality holds for the problem (9).
(c) FL(T (C; x̄)) + R+(1,0) is convex and

[FL(T (C; x̄)) + R+(1,0)] ∩ (−R++ × {0}) = ∅. (11)
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Theorem (continued ...)

(d) FL(T (C; x̄)) + R+(1,0) is convex and exactly one of the
following assertions holds:

(d1) Ŝ−
f (0) = ∅, in which case 0 ∈ L(x̄);

(d2) Ω̂−
+ 6= ∅, ŝ < 0, in which case minL(x̄) = −1

ŝ
;

(d3) Ω̂−
− 6= ∅, l̂ > 0, in which case maxL(x̄) = −1

l̂
.

(e) FL(T (C; x̄)) + R+(1,0) is convex, µL = 0 and

vk ∈ T (C; x̄), ‖vk‖ → +∞,
∇g(x̄)>vk → 0,∇f (x̄)>vk < 0]

}
=⇒ lim

k
∇f (x̄)>vk = 0.

(12)
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A simple sufficient condition for a minimum to be a KKT point,
under strong duality is expressed in the following result.

Proposition [Cárcamo-FB, 2015]:

Assume that strong duality holds for (P). Then, every solution
to (P) is a KKT point, that is, LSD ⊆ L(x̄) for all x̄ ∈ argmin

K
f .

It may applied to situations where results based either on exact
penalization techniques ([Yang-Peng, MOR 2007]) or where
Abadie’s constraint qualification fail. In addition, there are
instances where no minimizer is a KKT point, if strong duality is
not satisfied. For 1st case:

0 = µ
.

= min{f (x1, x2)
.

= x2 : g(x1, x2)
.

= x2 − x2
1 = 0, (x1, x2) ∈ R2}.

For 2nd case: f (x1, x2) = x2, g(x1, x2) = (x1−1)2 + (x2−1)2−1
and C .

= {(x1, x2) ∈ R2 : g0(x1, x2) ≤ 0} with
g0(x1, x2)

.
= (x1 − 1)2 + (x2 + 1)2 − 1.
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Nonconvex QP with two quadratic equality constraints

We now discuss the problem:

µ
.

= min{f (x) : g1(x) = 0, g2(x) = 0}, (13)

where we specialize the functions f ,gi , i = 1,2 to be (non
necessarily homogeneous) quadratic. Here,
C .

= {x ∈ Rn : g2(x) = 0}, K .
= {x ∈ C : g1(x) = 0},

f (x)
.

=
1
2

x>Ax +a>x +α, gi(x)
.

=
1
2

x>Bix +b>i x +βi , i = 1,2,

with A = A>,Bi = B>i ; a,bi ∈ Rn and α, βi being real numbers.
In addition to the dual problem

ν
.

= sup
λ1∈R

inf
x∈C
{f (x) + λ1g1(x)}, (14)
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consider also the standard (Lagrangian) dual problem to (13):

ν0
.

= sup
λ1,λ2∈R

inf
x∈Rn
{f (x) + λ1g1(x) + λ2g2(x)}. (15)

We say that problem (13) has standard strong duality (SSD) if
µ = ν0 and problem (15) admits solution. It is easy to check that

ν0 ≤ ν ≤ µ.

One the other hand, given a feasible point x̄ , it is said that x̄ is a
standard KKT point to problem (13), if for some λ1, λ2 ∈ R, one
has

∇f (x̄) + λ1∇g1(x̄) + λ2∇g2(x̄) = 0.
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Set

Z (x̄)
.

= {v ∈ Rn : ∇gi(x̄)>v +
1
2

v>Biv = 0, i = 1,2}.

It is known that

T (C; x̄) =
{

v ∈ Rn : ∇g2(x̄)>v = 0
}

= ∇g2(x̄)⊥ if∇g2(x̄) 6= 0,

and so [T (C; x̄)]∗ = R∇g2(x̄); whereas

T (C; x̄) =
{

v ∈ Rn : v>B2v = 0
}

if ∇g2(x̄) = 0.

The latter set is, in general, nonconvex. However, in case B2 is
positive semidefinite, or equivalently, g2 is convex (for instance,
when such an equality constraint corresponds to a component
of x taking the value either 0 or 1), with ∇g2(x̄) = 0, we obtain
T (C; x̄) = ker B2, and so [T (C; x̄)]∗ = (ker B2)⊥ = B2(Rn).
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Next theorem, which is new, provides 1st and 2nd order
necessary optimality conditions under additional assumptions
besides SD. It proves that every optimal solution is a standard
KKT point.

Theorem [Cárcamo-FB, 2015]: Let µ ∈ R

Let f , g1,g2 be quadratic, x̄ feasible satisfying ∇g2(x̄) 6= 0. Set
C = {x ∈ Rn : g2(x) = 0}. Then (a) =⇒ (b), where
(a) x̄ is a solution to (13) and SD holds;

(b) ∃ λ1, λ2 ∈ R such that ∇f (x̄) + λ1∇g1(x̄) + λ2∇g2(x̄) = 0,
A + λ1B1 + λ2B2 < 0 on Z2(x̄) ∪∇g2(x̄)⊥.

It may be applied to instances without satisfying Abadie’s CQ.

Z2(x̄)
.

= {v ∈ Rn : ∇g2(x̄)>v +
1
2

v>B2v = 0}.
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A concrete application

µq
.

= min
{

f (x)
.

=
1
2
∫ 1

0 x>(t)Ax(t)dt : g(x)
.

=
∫ 1

0 e>(t)x(t)dt − 1 = 0,

x ∈ C .
= L2

+(]0,1[;Rn)
}
.

Here, e ∈ qi L2
+(]0,1[;Rn) = L2

++(]0,1[;Rn). F = (f ,g).

Proposition: Assume µq > 0,

(a) Ω−+ = Ω=
+ = ∅, and therefore S+

g (0) = Ω+
+ 6= ∅;

(b) ∅ 6= S−f (µq) = Ω−−;

(c) m = l =
1

2µq
, so l > 0 and LSD = SD = {−2µq}, and so

cone(F (C) + R+(1,0)− µq(1,0)) =
{

(u, v) : v ≤ 1
2µq

u
}

;

(d) strong duality holds.
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By Lyapunov theorem F (C) + R+(1,0) is convex.
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