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Diary of Nice Days

- 1980-1981 PhD student at SISSA
- May 1981 - met Terry Rockafellar at IIASA for one day.

(Cellina’s idea) First discussion. Thank you, Terry.
- May 1984 - A recommendation letter by Terry for a CR position

at CNRS. Got this first position. Thank you, Terry.
- December 1984 - Terry reported on my Doctorat d’Etat

(habilitation) and came for habilitation. Thank you, Terry.
- May 1986 - First stay in Terry’s home. Thank you, Terry.
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Mayer’s Optimal Control Problem

Consider the minimization problem

Minimize ϕ(x(1)) (P)

over absolutely continuous x ∈W 1,1([0, 1];Rn) satisfying
ẋ(t) = f (t, x(t), u(t)) a.e. in [0, 1]
u(t) ∈ U(t) a.e. in [0, 1]
x(0) ∈ K0

where ϕ : Rn → R, f : [0, 1]× Rn × Rm → Rn, U : [0, 1] ; Rm is a
measurable set-valued map with closed nonempty images and
K0 ⊂ Rn is closed.
Let x̄ be a minimizer and ū be a corresponding control.
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Standard Assumptions (SA)

For all (t, x , u) ∈ [0, 1]× Rn × Rm, f (·, x , u) is measurable,
f (t, x , ·) is continuous and there exists a1 > 0 such that
supu∈U(t) |f (t, x , u)| ≤ a1(|x |+ 1);
∀ R > 0, there exists an integrable map kR : [0, 1]→ R+ such
that for a.e. t ∈ [0, 1] and all u ∈ U(t)

|f (t, x , u)− f (t, y , u)| ≤ kR(t) |x − y | , ∀x , y ∈ RB;

∃ a2 > 0, ρ > 0, f (t, ·, u) ∈ C 2 on x̄(t) + ρB,
supu∈U(t) ‖fx (t, x̄(t), u)‖ ≤ a2 for a.e. t ∈ [0, 1] ;
∃ ` ∈ L1([0, 1];R+), s.t. for a.e. t ∈ [0, 1], ∀ u ∈ U(t)
‖fx (t, x , u)− fx (t, y , u)‖ ≤ `(t) |x − y |, ∀ x , y ∈ x̄(t) + ρB;
ϕ is differentiable
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First Order Necessary Conditions
The Hamiltonian H : [0, 1]× Rn × Rn × Rm → R is defined by

H(t, x , p, u) = 〈p, f (t, x , u)〉

The maximum principle states that the solution
p̄ ∈W 1,1([0, 1];Rn) of the adjoint system{

−ṗ(t) = Hx (t, x̄(t), p(t), ū(t)) a.e.
−p(1) = ∇ϕ(x̄(1))

satisfies the transversality condition

p̄(0) ∈ N[
K0(x̄(0))

and the maximality condition for a.e. t ∈ [0, 1]:

max
u∈U(t)

〈p̄(t), f (t, x̄(t), u)− f (t, x̄(t), ū(t))〉 = 0

The maximum is attained by ū(t). (Pontryagin and al.)
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Second Order Tangents
Adjacent tangent to K ⊂ Rn at x ∈ K is

T [
K (x) := {u ∈ Rn | lim

h→0+

distK (x + hu)
h = 0}

Second order adjacent set to K at x in the direction u ∈ Rn

T [(2)
K (x ; u) := {v ∈ Rn | lim

h→0+

distK (x + hu + h2v)
h2 = 0}

v ∈ T [(2)
K (x ; u) if and only if ∃ ψ : [0, τ)→ K such that

ψ(0) = x , ψ̇(0) = u, ψ̈(0) = 2v

ψ(·) is Rockafellar’s second order inner arc
(goes back to Ben Tal and Zowe 1980.
See also R. Cominetti 1990 and Aubin-HF 1990.)
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Second Order Normals

Weak point of this notion -

{(u, v) | v ∈ T [(2)
K (x ; u)} is not closed.

First order normal cone N[
K (x) :=

[
T [

K (x)
]−

We associate with every q ∈ N[
K (x) the second order “normals”

N[(2)
K (x ; q) := {Q ∈ S(n) | 〈q,w〉+ 1

2Qyy ≤ 0,

∀y ∈ T [
K (x) ∩ {q}⊥, ∀w ∈ T [(2)

K (x ; y)}

where S(n) denotes the set of symmetric n × n matrices.
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Maximizing Controls

The set of maximizing controls at t ∈ [0, 1] is defined by

U(t) := arg max
u∈U(t)

H(t, x̄(t), p̄(t), u)

Then ū(t) ∈ U(t) a.e.
We abbreviate [t] := (t, x̄(t), p̄(t), ū(t)),

∆f (t, x̄(t), u) := f (t, x̄(t), u)− f (t, x̄(t), ū(t))

∆fx (t, x̄(t), u) := fx (t, x̄(t), u)− fx (t, x̄(t), ū(t))

Define

F (t) := co {(∆f (t, x̄(t), u),∆fx (t, x̄(t), u)) | u ∈ U(t)}
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Second Order Maximum Principle

Theorem
Assume ϕ is twice differentiable. Then the matrix solution W of
the second order adjoint system{

Ẇ (t) = −Hpx [t]W (t)−W (t)Hxp[t]−Hxx [t]
W (1) = −ϕ′′(x̄(1))

satisfies the second order transversality condition

W (0) ∈ N[(2)
K0

(x̄(0); p̄(0))

and the second order maximality condition

max
(v ,M)∈F (t)

〈
MT p̄(t) + W (t)v , v

〉
= 0, a.e. in [0, 1]
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Additional Regularity Assumptions (ARA)
This is similar to the first order maximum principle :

max
u∈U(t)

〈p̄(t),∆f (t, x̄(t), u)〉 = 0 ⇔ max
v∈co ∆f (t,x̄(t),U(t))

〈p̄(t), v〉 = 0

For a.e. t ∈ [0, 1], f (t, ·, ·) ∈ C 2 on (x̄(t) + ρB)× (ū(t) + ρB);
∃ a3 > 0 and integrable `2 : [0, 1]→ R+ s.t. for a.e. t ∈ [0, 1],
‖fu(t, x̄(t), ū(t))‖ ≤ a3, ∀ x , y ∈ x̄(t) +ρB, ∀ u, v ∈ ū(t) +ρB∥∥f ′(t, x , u)− f ′(t, y , v)

∥∥ ≤ a3(|x − y |+ |u − v |)∥∥f ′′(t, x , u)− f ′′(t, y , v)
∥∥ ≤ `2(t)(|x − y |+ |u − v |)

f ′(t, x , u) and f ′′(t, x , u) denote the Jacobian, resp. Hessian,
of f (t, ·, ·)

Define the set of non-singular times A := {t ∈ [0, 1] | Hu[t] 6= 0}
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Necessary Condition for Partially Singular Controls

Theorem

Assume (SA), (ARA) and let W be the solution of the second
order adjoint system. Then for a.e. t ∈ [0, 1] and for every
u ∈ T [

U(t)(ū(t)) satisfying one of the following conditions

(i) t ∈ A, Hu[t]u = 0 and Hu[t]v + 1
2Huu[t]uu = 0 for some

v ∈ T [(2)
U(t)(ū(t); u)

(ii) t ∈ [0, 1]\A and Huu[t]uu = 0

the Jacobson inequality holds true

fu[t]T (Hux [t] + W (t)fu[t]) uu ≤ 0.
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Example: Controls Given by Inequality Constraints

Assume (SA), (ARA) and that

U(t) :=
s⋂

j=1

{
u ∈ Rm

∣∣∣ c j(t, u) ≤ 0
}

where c j : [0, 1]× Rm → R are measurable in t, c j(t, ·) ∈ C 2.

I(t) := {j | c j(t, ū(t)) = 0}

Assume {∇uc j(t, ū(t))}j∈I(t) are linearly independent for a.e. t.
Then

T [
U(t)(ū(t)) = {u ∈ Rm | 〈∇ucj(t, ū(t)), u〉 ≤ 0 ∀ j ∈ I(t)}
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Second Order Condition via Lagrange Multipliers

Corollary

Let W be as in the second order maximum principle.
Then there exist measurable, uniquely defined (up to a set of
measure zero) αj : [0, 1]→ R+, j = 1, ..., r such that for a.e.
t ∈ [0, 1]

(i) αj(t)c j(t, ū(t)) = 0 for all j ∈ {1, . . . , s};
(ii) Hu[t] =

∑s
j=1 αj(t)∇uc j(t, ū(t));

(iii) maxu∈U0(t) fu[t]T (Hux [t] + W (t)fu[t]) uu = 0,

U0(t) := {u ∈ T [
U(t)(ū(t)) | Hu[t]u = 0 and

(Huu[t]−
s∑

j=1
αj(t)c j

uu(t, ū(t)))uu = 0}.
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Second Order Jets
Let f : Rn → [−∞,∞] and x ∈ dom(f ). A pair (q,Q) ∈ Rn×S(n)
is a superjet of f at x if for some δ > 0 and for all y ∈ x + δB,

f (y) ≤ f (x) + 〈q, y − x〉+ 1
2Q(y − x)(y − x) + o(|y − x |2)

The set of all superjets of f at x is denoted by J2,+f (x).
Similarly, (q,Q) ∈ Rn × S(n) is a subjet of f at x if the above
holds with ≤ replaced by ≥
The set of all subjets of f at x is denoted by J2,−f (x).

The value function V : [0, 1]× Rn → R is defined by

V (t, y) := inf
{
ϕ(z(1))

∣∣∣ z ∈ S[t,1](y)
}
,

where y ∈ Rn and S[t,1](y) denotes the set of solutions of the
control system satisfying x(t) = y and defined on [t, 1].
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Backward Propagation of Superjets

Theorem

Assume (SA) and that a process (x̄ , ū) satisfies

V (t0, x̄(t0)) = ϕ(x̄(1))

Let Ψ ∈ S(n) be so that (∇ϕ(x̄(1)),Ψ) ∈ J2,+ϕ(x̄(1)).
Consider solutions p̄ and W of first and second order adjoint
systems with p̄(1) = −∇ϕ(x̄(1)) and W (1) = −Ψ.
Then W satisfies the maximality condition a.e. in [t0, 1] and

(−p̄(t),−W (t)) ∈ J2,+
x V (t, x̄(t)), ∀ t ∈ [t0, 1].
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Forward Propagation of Subjets

Theorem

Assume (SA) and that a process (x̄ , ū) satisfies

V (t0, x̄(t0)) = ϕ(x̄(1))

Consider the adjoint state p̄ defined on [t0, 1] and assume that for
some W0 ∈ S(n) we have (−p̄(t0),−W0) ∈ J2,−

x V (t0, x0).
Then for the solution W of the linear matrix equation

Ẇ (t) = −Hpx [t]W (t)−W (t)Hxp[t]−Hxx [t], W (t0) = W0

the following sensitivity relation holds true:

(−p̄(t),−W (t)) ∈ J2,−
x V (t, x̄(t)), ∀ t ∈ [t0, 1].
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Merci pour votre attention
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Critical Cone of Tangent Controls

Let (x̄ , ū) be a strong local minimizer and p̄ be the corresponding
adjoint state. Define the local critical cone at ū ∈ U by

Cloc(ū) := {u(·) ∈ L1 | u(t) ∈ T [
U(t)(ū(t)) and Hu[t]u(t) = 0 a.e. }

and let

M(2)(ū) := {(u, v) ∈ L∞|u ∈ Cloc(ū), v(t) ∈ T [(2)
U (ū(t); u(t)) a.e. in A}

Consider the linearized system{
ẏ(t) = fx [t]y(t) + fu[t]u(t) a.e. in [0, 1]
y(0) = y0,

where fx [t] := fx (t, x̄(t), ū(t)) and fu[t] is defined in a similar way.
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Quadratic functional Φ
∀ (u(·), v(·)) ∈ L2([0, 1];Rm)× L1([0, 1];Rm), y0, w0 ∈ Rn,

Φ(u, v , y0,w0) := 〈−p̄(0),w0〉+ 1
2ϕ
′′(x̄(1))y(1)y(1)−

1∫
0

(Hu[t]v(t)+1
2Hxx [t]y(t)y(t)+Hxu[t]y(t)u(t)+1

2Huu[t]u(t)u(t))dt

where y(·) is the solution of the linearized system for y0, u.

Theorem (D. Hoehener, 2012; HF and N. Osmolovskii 2015
under weaker assumptions)
If (SA), (ARA) hold true, then

Φ(u, v , 0, 0) ≥ 0 for all (u, v) ∈ M(2)(ū).
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Integral Necessary Conditions
The above theorem does not allow to deduce pointwise conditions
except under strong assumption on U(t) because the sets

{(u, v) | u ∈ T [
U(t)(ū(t)), v ∈ T [(2)

U (ū(t); u)}

are not closed, in general. Define the second order jets

J2
K0(x̄(0)) :=

{
(y ,w) ∈ R2n

∣∣∣ ∀ hi → 0+, ∃ (yi ,wi )→ (y ,w),

〈p̄(0), yi〉 = 0, x̄(0) + hi yi + h2
i wi ∈ K0,

}
.

J2(t) := {(u, v) | ∀ hi → 0+, ∃ (ui , vi )→ (u, v),
Hu[t]ui = 0, ū(t) + hi ui + h2

i vi ∈ U(t)}.

Then t ; J2(t) is measurable with closed images.
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New Integral Necessary Conditions

Admissible variations of ū(·)

M(2)(ū) := {(u, v) ∈ L2 × L1 | u ∈ Cloc(ū),
(u(t), v(t)) ∈ J2(t) a.e. in A}

Then M2(ū) ⊂M(2)(ū).

Theorem

If (SA), (ARA) hold true, then ∀ (u, v) ∈M(2)(ū),
∀ (y0,w0) ∈ J2

K0
(x̄(0))

Φ(u, v , y0,w0) ≥ 0.
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