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1. Motivation

Let us start with the parametric optimization problem

f(x, t) → minx s.t. x ∈ M(t) , t varies near t0, (1)

where T is a normed linear space, M : T ⇒ Rn, f : Rn × T → R.

For (1), define the infimum value function ϕ by

ϕ(t) := inf
x
{f(x, t) | x ∈ M(t)} , t ∈ T

and the argmin mapping Ψ by

Ψ(t) := argmin
x

{f(x, t) | x ∈ M(t)} , t ∈ T . (2)

Let

(t0, x0) ∈ gph Ψ be a given reference point.
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Inspired by Cánovas et al ’14, we give conditions for calmness of the

argmin mapping t 7→ Ψ(t) = {x ∈ M(t) | f(x, t) ≤ ϕ(t)} ,

for t near t0, by relating this to calmness of the auxiliary mappings

(t, µ) 7→ L(t, µ) = {x ∈ M(t) | f(x, t0) ≤ µ} ,

µ 7→ L(t0, µ) = {x ∈ M(t0) | f(x, t0) ≤ µ} .
(3)

If M(t) is described by inequalities, then L(t, µ) is so, too, and moreover,
L(t0, µ) is given by inequalities perturbed only at the right-hand side.

Main purposes of the paper:

• To show under suitable conditions and for a large class of problems

L(t0, ·) calm at (ϕ(t0), x0) ⇒ Ψ calm at (t0, x0),

• to recall an essential tool: calm intersections of multifunctions,

• to discuss some consequences for special parametric programs.

4



2. Concepts of upper Lipschitz (u.L.) continuity

Let (X, dX), (T, dT ) be metric spaces, and S : T ⇒ X be a multifunction.
Let B(x0, ε) := {x ∈ X | dX(x, x0) ≤ ε}, similarly B(t0, ε).

Given t0 ∈ T and x0 ∈ S(t0) or ∅ 6= X0 ⊂ S(t0),

S is called calm at (t0, x0) (with rank L > 0) if there is some ε > 0 such
that for all t ∈ B(t0, ε),

x ∈ S(t) ∩B(x0, ε) ⇒ dist(x, S(t0)) ≤ LdT (t, t0) , (4)

S is called locally u.L. at (t0, X0) (with rank L > 0) if there is some ε > 0

such that for all t ∈ B(t0, ε), with V = B(X0, ε),

x ∈ S(t) ∩ V ⇒ dist(x, X0) ≤ LdT (t, t0) . (5)

In particular, S is also called isolated calm at (t0, x0) if X0 = {x0}, and
S is called upper Lipschitz at t0 if X0 = S(t0) and V = X.
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Remarks:

1. For calmness of inequality systems, many verifiable conditions are
known, cf. e.g. Henrion-Outrata ’05, Ioffe-Outrata ’08, [KK’09],
Gfrerer ’11 and the references therein.

2. If T = Rm, X = Rn, and gphS is the union of finitely many convex
polyhedral sets, then S is upper Lipschitz at each t0 ∈ T (with uniform
rank) and hence calm on gphS. (Robinson ’81)

3. Calmness is implied by the Aubin property of S at (t0, x0) ∈ gphS,

∃L, ε ∀t, t′ ∈ B(t0, ε) : x ∈ S(t)∩B(x0, ε) ⇒ dist(x, S(t′)) ≤ LdT (t, t′) .

4. Obviously, if x0 ∈ X0, then

S locally u.L. at (t0, X0) ⇒ S calm at (t0, x0),

since X0 ⊂ S(t0), while the opposite implication is not true.
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Characterization of locally u.L. behavior by describing functions

Let X, T be metric spaces, S : T ⇒ X, t0 ∈ T , and ∅ 6= X0 ⊂ S(t0). We
call p Lipschitzian increasing near X0 if p ≡ 0 on X0 and

∃c, δ > 0 : p(x) ≥ c dist(x, X0) whenever dist(x, X0) < δ. (6)

We say that p is a describing function for S near (t0, X0) if

S is locally u.L. at (y0, X0) ⇔ p is Lipschitzian increasing near X0.

Examples of describing functions

(i) pS(x) = dist((t0, x),gphS) (≤ dist(x, X0)), cf. e.g. [KK02].

(ii) For S(t1, t2) = {x ∈ Rn | g(x) ≤ t1, h(x) = t2} and locally Lipschitz
(g, h) : Rn → Rm+k with t0 = (0,0) and X0 = S(0,0), a classical
example is the locally Lipschitz function

p(x) = ‖h(x)‖+ maxi{0, gi(x)}.
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Recall: Optimality conditions and exact penalization

Already in the 1970-1980ies, concepts of this type were used in various
settings to derive optimality conditions or exact penalization schemes (by
Ioffe, Rockafellar, Clarke, Robinson, Dolecki, Rolewicz, Burke, Mangasarian,
Penot, Thibault and ...); for a survey of that time see Burke ’91.

In our abstract framework, one has (cf. e.g. [KK02])

Proposition 1: Assume f : X → R is Lipschitz around x0 ∈ X0 and

S is locally u.L at (t0, X0), p is any describing fct for S near (t0, X0),

or, alternatively, S is calm at (t0, x0), p(x) = pS(x) and X0 = S(t0).

If x0 is a local minimizer of f on X0, then, provided that α is large enough,
x0 is a free local minimizer of

P (x) = f(x) + αp(x).
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3. Calmness of the argmin map via calm intersections

Consider again the parametric optimization problem (1),

f(x, t) → minx s.t. x ∈ M(t) , t varies near t0,

and assume, with T is normed linear, Ψ = argmin mapping,

M : T ⇒ Rn is closed multifunction,

f is locally Lipschitz, and (t0, x0) ∈ gphΨ is given.
(7)

As announced above, the argmin map will be related to the auxiliary map

L(t, µ) = M(t) ∩ {x | f(x, t0) ≤ µ} (intersection map).

Define for given V ⊂ Rn,

ΨV (t) := argminx{f(x, t) | x ∈ M(t) ∩ V }, t ∈ T,

ϕV (t) := infx{f(x, t) | x ∈ M(t) ∩ V }. t ∈ T.
(8)
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Theorem 1. [KK15, Thm. 3.1]

Consider the problem (1) under the assumptions (7). Suppose that

(i) the feasible set map M is calm at (t0, x0) and satisfies, for some
% > 0, dist(x0, M(t)) ≤ %‖t− t0‖ for t near t0 (Lipschitz l.s.c.).

(ii) L(t, µ) = {x ∈ M(t) | f(x, t0) ≤ µ} is calm at ((t0, ϕ(t0)), x0).

Then the argmin map Ψ is calm at (t0, x0).

Note.

Under Lipschitz l.s.c. of M , the proof of Thm. 3.1 in [KK15] can be
modified to obtain similar statements for

M and L locally u.L. ⇒ Ψ locally u.L.,

M and L Hölder calm ⇒ Ψ Hölder calm.

10



The proof of Theorem 1

first gives that for some nbhd V of x0 and t near t0,

|ϕV (t)− ϕV (t0)| has a Lipschitz estimate and ΨV (t) 6= ∅
(using M Lipschitz l.s.c.). Further, one has

Ψ(t) ∩ V 6= ∅ ⇒ ΨV (t) = Ψ(t) ∩ V (hence, ϕV (t)) = ϕ(t))

for given t ∈ T and V ⊂ Rn, and one uses

Ψ(t) = L(t, µ(x, t)) with µ(x, t) := ϕ(t) + f(x, t0)− f(x, t).

The rest is straightforward application of the assumptions.

The idea of proof combines standard tools from parametric optimization
in the 1980ies, cf. e.g. Alt ’83, Cornet ’83, Robinson ’83, Kl ’84, ’85.
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Intersection Theorem (KK02, Thm. 3.6). Consider closed mappings
G : Y ⇒ X, Γ : Z ⇒ X, X, Y, Z metric spaces, such that

• G, Γ and z 7→ G(y0) ∩ Γ(z) are calm at (y0, x0) resp. (z0, x0),

• Γ−1 has the Aubin property at (x0, z0),

then the intersection map (y, z) 7→ G(y) ∩ Γ(z) is calm at ((y0, z0), x0).

Applying this to the current setting (1) under (7),

f(x, t) → minx s.t. x ∈ M(t) , t varies near t0,

we consider either G = M, Γ = F or G = F, Γ = M for

L(t, µ) = M(t) ∩ F (µ), where F (µ) := {x | f(x, t0) ≤ µ}.

Note: F−1(x) has the Aubin property since f is locally Lipschitz.
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Apply the setting G = M, Γ = F of the intersection theorem:

Theorem 2. [KK15]

Suppose the assumptions of Theorem 1, but replace the assumption

(ii) L(t, µ) = {x ∈ M(t) | f(x, t0) ≤ µ} is calm at ((t0, ϕ(t0)), x0).

by the assumption that both

(ii)’ the level set map F (µ) := {x | f(x, t0) ≤ µ} is calm at (ϕ(t0), x0),

(ii)” and µ 7→ L(t0, µ) = M(t0) ∩ F (µ) is calm at (ϕ(t0), x0),

Then the argmin map Ψ is calm at (t0, x0). ∗)

∗) where (similarly in Theorem 1) Ψ(t) 6= ∅ for t near t0 if x0 is isolated calm.
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Question: Is the opposite direction of Theorem 2 true under the Aubin
poperty on M? No! "Ψ calm" does not imply "L calm".

Example 1: see [KK15]. Consider

min y − c1x− c2y s.t. x2 − y ≤ b, (c1, c2, b) close to o = (0,0,0).

Its argmin mapping Ψ is Lipschitz near o, and hence calm at (o, (0,0)):

Ψ(c1, c2, b) =

{(
c1

2(1−c2)
,

c21
4(1−c2)2

− b

)}
.

However, L(0, µ) = {(x, y) | y ≤ µ, x2 ≤ y} is not calm at the origin.

Hence, the opposite direction of Theorem 2 (and Theorem 1) is not
true even for a program with linear objective and convex quadratic con-
straint(s).
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4. Specializations of Theorem 2

Model 1: Consider the standard parametric NLP

minx f(x, p, c) = h(x, p) + cTx s.t. x ∈ M(p, b),

t = (p, c, b) varies near t0 = (p0, c0, b0) ∈ T = Rq+n+m,

where
• h, gi : Rn → R ∈ C1

• M(t) = M(p, b) = {x ∈ Rn | gi(x, p) ≤ bi , i = 1, . . . , m},
• F (µ) = {x | f(x, p0, c0) ≤ µ}.

Verify assumptions of Theorem 2:

M is Lipschitz l.s.c. at ((p0, b0), x0) ⇔ MFCQ holds for M(p0, b0) at x0

(cf. e.g. [KK09]), this is equivalent to the Aubin prop. (Robinson ’76).

Conditions for calmness of F and M(t0) ∩ F (finite C1 inequality system,
RHS perturbations) are discussed e.g. in Henrion-Jourani-Outrata ’02,
Henrion-Outrata ’05, Ioffe-Outrata ’08, [KK09], Kummer ’09, Gfrerer ’11.
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Model 2: Consider the canonically perturbed program

minx f(x, c) = h(x) + cTx s.t. gi(x) ≤ bi ∀ i ∈ I,

t = (c, b) ∈ Rn × C(I,R) varies near t0 = (c0, b0) ∈ gphΨ, and

• I compact metric space (including finite I),

• h, gi : Rn → R convex, ∈ C1, (i, x) 7→ gi(x) continuous,

• M(b) = {x| gi(x) ≤ bi ∀i ∈ I}, F (µ) = {x | f(x, c0) ≤ µ},
• the Slater CQ at M(b0) be satisfied.

For h, gi linear, these are setting + assumptions in Cánovas et al ’14. They
prove in their special case: Theorem 2 even holds as ”if-and-only-if”.

Verify assumptions of Theorem 2:

Slater CQ ⇒ M has Aubin property at (b0, x0), while criteria for calmness
of F and M(b0) ∩ F can be found for I finite e.g. in Li ’97, Pang ’97,
Henrion-Jourani ’02, Zheng-Ng ’08, or including I infinite e.g. in Henrion-
Outrata ’05, [KK09].
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5. Final remarks

1. The presented approach can be helpful also in determining the calm-
ness modulus for argmin mappings. Recently, Cánovas, Kruger, López,
Parra, Théra ’14 demonstrates this for linear SIPs.

2. Calmness looks like a rather weak Lipschitz stability concept for the
argmin mapping. However, it is useful as a kind of minimal require-
ment for the lower level in bi-level problems (CQ).

3. We have shown: Calmness of L0(µ) = M(t0) ∩ {x | f(x, t0) ≤ µ} is
essential for checking calmness of the argmin map Ψ. Note: If L0 is
calm at (ϕ(t0), x0) for each x0 ∈ Ψ(t0) (if Ψ(t0) is compact) then
Ψ(t0) is a weak sharp minimizing set of the problem f(x, t0) → minx

s.t. x ∈ M(t0) (Henrion-Jourani-Outrata ’02).

4. Our Theorem 1 also applies to complementarity or equilibrium con-
straints M . It would be of interest to see interrelations to recent
calmness results for MPECs (including Gfrerer-Kl ’15).
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5. Concerning Hölder type calmness properties for inequality systems cf.
e.g. Kummer ’09, [KK09], Gfrerer ’11, Kl-Kruger-Kummer ’12.

6. The calm intersection theorem used in the proof of Theorem 2 is a
powerful tool also in other situations, see recent papers by Henrion,
Outrata, Surowiec and the authors.
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