TERRY FEST 2015, Limoges 18-22 May 2015

Calm and Locally Upper Lipschitz Multifunctions:
Intersection Mappings and Applications iIn
Optimization

Diethard Klatte, University Zurich

Bernd Kummer, Humboldt University Berlin

Based on:

[KK15] D. Klatte, B. Kummer, On calmness of the argmin mapping in parametric op-
timization problems, J. Optim. Theory Appl. (2015) 165: 708-7109.

[KK09] D. Klatte, B. Kummer, Optimization methods and stability of inclusions in Ba-
nach spaces, Math. Program. Ser. B 117 (2009) 305-330.

[KK02] D. Klatte, B. Kummer, Constrained minima and Lipschitzian penalties in met-
ric spaces, SIAM J. Optim. 13 (2002) 619-633. See also D. Klatte, B. Kummer,
Nonsmooth Equations in Optimization, Kluwer 2002.



Contents:

1.

Motivation

. Concepts of upper Lipschitz continuity

. Calmness of the argmin map via calm intersections

. Specializations

. Final remarks



1. Motivation

Let us start with the parametric optimization problem

f(xz,t) — mingy s.t. x € M(t), t varies near t9,

where T is a normed linear space, M : T = R", f :R" x T — R.

For (1), define the infimum value function ¢ by
o(t) := igf{f(a:,t) e e M)}, teT
and the argmin mapping ¥ by
W(t) = arg;nin{f(az,t) |l e e M(t)}, teT.
Let

(t9, V) € gph ¥ be a given reference point.

(1)

(2)



Inspired by Canovas et al '14, we give conditions for calmness of the

argmin mapping |t+— W(t) ={x e M(t) | f(x,t) < ()},

for ¢ near t9, by relating this to calmness of the auxiliary mappings

(t,p) — L(t,p) = {xeM@®)| flz,t°) <pu},
po— L% p) = {ze M@ | f(x,t°) <u}.

If M(t) is described by inequalities, then L(t,u) is so, too, and moreover,
L(to,u) IS given by inequalities perturbed only at the right-hand side.

(3)

Main purposes of the paper:

e [0 show under suitable conditions and for a large class of problems
L(t9,.) calm at (¢(t9),29) = W calm at (¢9,29),

e tO recall an essential tool: calm intersections of multifunctions,

e tO discuss some consequences for special parametric programs.



2. Concepts of upper Lipschitz (u.L.) continuity

Let (X,dx), (T,dr) be metric spaces, and S : T = X be a multifunction.
Let B(z0,¢) := {x € X |dx(z,29) <&}, similarly B(t9,¢).

Given t9 € T and z° € S(t°) or 0 = X° c S(9),

S is called calm at (¢9,29) (with rank L > 0) if there is some € > 0 such
that for all ¢t € B(t9,¢),

e St)NB@Ye) = dist(z, S°)) < Ldp(t,t9), (4)
S is called locally u.L. at (¢, X°) (with rank L > 0) if there is some ¢ > 0
such that for all t € B(t9,¢), with V = B(X9,¢),

re SNV = dist(z, X°%) < Ldp(t,t°). (5)

In particular, S is also called isolated calm at (t9,z0) if X0 = {29}, and
S is called upper Lipschitz at ¢° if X0 = 5(°) and V = X.



Remarks:

1.

2.

For calmness of inequality systems, many verifiable conditions are
known, cf. e.g. Henrion-Outrata '05, Ioffe-Outrata '08, [KK'09],
Gfrerer '11 and the references therein.

If T"=R"™, X = R", and gph S is the union of finitely many convex
polyhedral sets, then S is upper Lipschitz at each t° € T (with uniform
rank) and hence calm on gphS. (Robinson '81)

. Calmness is implied by the Aubin property of S at (¢t°,z9) € gph S,

3L,evt,t' € B(t%¢) 1 z e S)NB(Y,e) = dist(z, S()) < Ldp(t,t).

. Obviously, if 29 € X9 then

S locally u.L. at (9, X9 = S calm at (¢9,29),

since X9 ¢ 5(¢9), while the opposite implication is not true.



Characterization of locally u.L. behavior by describing functions

Let X, T be metric spaces, S: T = X, t9 ¢ T, and 0 = X9 c S(t°). We
call p Lipschitzian increasing near X9 if p=0on X% and

Je,6 > 0 p(x) > c dist(z, X°) whenever dist(z, X°) < 6. (6)
We say that p is a describing function for S near (¢9, X9) if

S is locally u.L. at (v, X9 <« pis Lipschitzian increasing near X0©.

Examples of describing functions
(i) pg(z) = dist((t9,z),gph S) (< dist(z, X9)), cf. e.g. [KKO02].

(i) For S(t1,t2) = {x € R"|g(x) <t1, h(x) = tp} and locally Lipschitz
(g,h) : R® — R™tk with t© = (0,0) and X° = 5(0,0), a classical
example is the locally Lipschitz function

p(z) = [[h(z)]| + max;{0, gi(z)}.



Recall: Optimality conditions and exact penalization

Already in the 1970-1980ies, concepts of this type were used in various
settings to derive optimality conditions or exact penalization schemes (by
Ioffe, Rockafellar, Clarke, Robinson, Dolecki, Rolewicz, Burke, Mangasarian,
Penot, Thibault and ...); for a survey of that time see Burke '91.

In our abstract framework, one has (cf. e.g. [KK02])

Proposition 1: Assume f: X — R is Lipschitz around 9 ¢ X0 and
S is locally u.L at (¢, X9), p is any describing fct for S near (9, X9),
or, alternatively, S is calm at (¢9,29), p(z) = pg(z) and X9 = S(+9).

If 20 is a local minimizer of f on XO, then, provided that « is large enough,
2V is a free local minimizer of

P(z) = f(z) + ap(z).



3. Calmness of the argmin map via calm intersections

Consider again the parametric optimization problem (1),

f(z,t) — mingy s.t. x € M(t), t varies near t9,
and assume, with 7' is normed linear, W —= argmin mapping,
M T = R" is closed multifunction,

f is locally Lipschitz, and (t0,29) € gph W is given. (7)

As announced above, the argmin map will be related to the auxiliary map

L(t,n) = M) N{x | fz,t9) < n}  (intersection map).

Define for given V C R",

Wy (t) = argming{f(z,t) |z e M(t)NV}, teT,
(8)

oy () infy{f(x,t) | € M(t)NV}. teT.



Theorem 1. [KK15, Thm. 3.1]
Consider the problem (1) under the assumptions (7). Suppose that

(i) the feasible set map M is calm at (t°,29) and satisfies, for some
o> 0, dist(z9, M(t)) < o||t — t9|| for t near tO (Lipschitz I.s.c.).

(i) L(t,p) ={z € M(t) | f(z,t0) < pu}is calm at ((t9, ¢(¢9)),zY).

Then the argmin map W is calm at (¢9, 29).

Note.

Under Lipschitz l.s.c. of M, the proof of Thm. 3.1 in [KK15] can be
modified to obtain similar statements for

M and L locally u.L. = W locally u.L.,
M and L Holder calm = W HOolder calm.
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The proof of Theorem 1

first gives that for some nbhd V of 20 and ¢ near 9,

v (1) — o (t9)] has a Lipschitz estimate and Wy, (t) # 0
(using M Lipschitz I.s.c.). Further, one has

V)NV ED = V@) =Wv@) NV |(hence, py(t)) = p(t))
for given t €¢ T and V C R"™, and one uses

W(t) = L(t,u(z,t))| with u(z,t) == o(t) + f(z,t9) — f(z,1).

The rest is straightforward application of the assumptions.

The idea of proof combines standard tools from parametric optimization
in the 1980ies, cf. e.g. Alt '83, Cornet '83, Robinson '83, K| '84, '85.
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Intersection Theorem (KK02, Thm. 3.6). Consider closed mappings
G:Y=X,I . Z=X, X,Y,Z metric spaces, such that

e G, and z+— GO) NI (z) are caim at (y°,29) resp. (29, 29),
e 1 has the Aubin property at (29, 29),

then the intersection map (y,2) — G(y) N (2) is calm at ((y°, 29), 29).

Applying this to the current setting (1) under (7),

f(z,t) = ming s.t. x € M(t), t varies near 9,

we consider either G =M, = F or G=F, [ = M for

L(t,p) = M(t) N F(p), where F(u) :={z|f(z,t°) < p}.

Note: F~1(z) has the Aubin property since f is locally Lipschitz.

12



Apply the setting G = M, ' = F' of the intersection theorem:

Theorem 2. [KK15]

Suppose the assumptions of Theorem 1, but replace the assumption
(i) L(t,p) = {& € M(t) | f(z,t9) < p} is calm at ((t°,¢(t0)),20).

by the assumption that both

(i)’ the level set map | F(p) = {z| f(z,t9) < u}|is calm at (x(t9), 29),

(i) and [p— L0, 1) = MEO) N F(w) | is calm at (p(t9),29),

Then the argmin map W is calm at (¢0,20). *)

*) where (similarly in Theorem 1) W(t) % 0 for t near tO if 20 is isolated calm.
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Question: Is the opposite direction of Theorem 2 true under the Aubin
poperty on M? No! "W calm" does not imply "L calm".

Example 1: see [KK15]. Consider

min y —ciz —coy  S.t. 22—y <b, (cq1,co,b) close to o= (0,0,0).

Its argmin mapping W is Lipschitz near o, and hence calm at (o, (0,0)):

c2
\U(Clv €2, b) — {(2(1_162) ) 4(1_102)2 o b) } :

However, |L(0, 1) = {(z,vy) | y < pu, 2 <y} |is not calm at the origin.

Hence, the opposite direction of Theorem 2 (and Theorem 1) is not
true even for a program with linear objective and convex quadratic con-
straint(s).
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4. Specializations of Theorem 2
Model 1: Consider the standard parametric NLP
ming f(z,p,¢) = h(x,p) +c'z s.t. z € M(p,b),
t = (p,c,b) varies near t9 = (p9,°,9) € T = Rettm

where
e h,g; . R" - R ¢e(C!

o M(t) = M(p,b) ={x € R"|g;(z,p) <b;, i=1,...,m},
o F(u)={z|f(z,p% %) < u}.

Verify assumptions of Theorem 2:

M is Lipschitz l.s.c. at ((°,49),2°) & MFCQ holds for M(p°,b°) at 2
(cf. e.g. [KK09]), this is equivalent to the Aubin prop. (Robinson '76).

Conditions for calmness of F and M (t°) N F (finite C! inequality system,
RHS perturbations) are discussed e.g. in Henrion-Jourani-Outrata '02,
Henrion-Outrata '05, Ioffe-Outrata '08, [KK09], Kummer '09, Gfrerer'11.
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Model 2: Consider the canonically perturbed program

ming f(z,¢) = h(z) +c'z s.t. g;(z) <b; Viel,

t = (¢,b) € R x C(I,R) varies near t9 = (c9,5°) € gph ¥, and
e |/ compact metric space (including finite I),
e h,g; . R" — R convex, € C!, (i,2) — g;(z) continuous,
o M(b) = {z|gi(z) <b;Viel}, F(p)={z|f(z,P) < u},
e the Slater CQ at M (¥°9) be satisfied.

For h, g; linear, these are setting 4 assumptions in Canovas et al '14. They
prove in their special case: Theorem 2 even holds as "if-and-only-if".

Verify assumptions of Theorem 2:

Slater CQ = M has Aubin property at (b9, 29), while criteria for calmness
of F and M(b°) N F can be found for I finite e.g. in Li '97, Pang '97,
Henrion-Jourani '02, Zheng-Ng '08, or including I infinite e.g. in Henrion-
Outrata '05, [KK09].
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5. Final remarks

1.

The presented approach can be helpful also in determining the calm-
ness modulus for argmin mappings. Recently, Canovas, Kruger, Lopez,
Parra, Théra '14 demonstrates this for linear SIPs.

. Calmness looks like a rather weak Lipschitz stability concept for the

argmin mapping. However, it is useful as a kind of minimal require-
ment for the lower level in bi-level problems (CQ).

. We have shown: Calmness of LO(n) = M%) N {z| f(z,t%) < u} is

essential for checking calmness of the argmin map W. Note: If LY is
calm at (p(t9),29) for each z° € Ww(t9) (if w(tY) is compact) then
W (t9) is a weak sharp minimizing set of the problem f(z,t°) — min,
s.t. z € M(t9) (Henrion-Jourani-Outrata '02).

. Our Theorem 1 also applies to complementarity or equilibrium con-

straints M. It would be of interest to see interrelations to recent

calmness results for MPECs (including Gfrerer-KI '15).
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5. Concerning Holder type calmness properties for inequality systems cf.
e.g. Kummer '09, [KK09], Gfrerer '11, KI-Kruger-Kummer "12.

6. The calm intersection theorem used in the proof of Theorem 2 is a
powerful tool also in other situations, see recent papers by Henrion,
Qutrata, Surowiec and the authors.
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