Generic sensitivity analysis for semi-algebraic optimization

Adrian Lewis (with D. Drusvyatskiy and A. loffe)

ORIE Cornell

Terry Fest

Limoges, May 2015

Outline

- Strong regularity and Sard's Theorem
- Semi-algebraic functions and thin subdifferentials
- Identifiability and the active set philosophy
- Example: low-rank matrix optimization via the nuclear norm
- Generic metric regularity and alternating projections

Inversion and strong regularity

Problem: Given a **set-valued mapping** $\Phi: \mathbb{R}^n \rightrightarrows \mathbb{R}^n$, find a **solution** x with **data** $y \in \Phi(x)$. Equivalently, $x \in \Phi^{-1}(y)$.

Strong regularity (Robinson '80) then means

graph
$$\Phi = \operatorname{graph}(G^{-1})$$
 around (x, y)

for some single-valued Lipschitz G.

Crucial for sensitivity, algorithms. . . (Dontchev-Rockafellar '14)

Example (Banach, 1922) Mappings

 Φ = identity + single-valued contraction

are strongly regular, and the iteration

$$x \leftarrow y + x - \Phi(x)$$
 converges to $\Phi^{-1}(y)$.

Sard's Theorem (1942)

For smooth $\Phi \colon \mathbf{R}^n \to \mathbf{R}^n$, strongly regularity holds when $\nabla \Phi$ is invertible. (Inverse function theorem)

For **generic** y (almost all in Lebesgue measure), true at every $x \in \Phi^{-1}(y)$.

What if Φ is more general: nonsmooth or set-valued?

- Optimization: Φ a subdifferential.
- ▶ Variational inequalities: $\Phi = \text{smooth map} + \text{normal cone}$.

Structured: Saigal-Simon '73, Spingarn-Rockafellar '79, Alizadeh-Haeberly-Overton '97, Shapiro '97, Pataki-Tunçel '01.

Unstructured? Clearly Φ must have "n-dimensional" graph.

Subdifferentials and stationary points

Suppose $\Phi = \partial f$, for a function $f : \mathbf{R}^n \to \mathbf{\bar{R}}$, so $\Phi^{-1}(0)$ consists of stationary points.

As usual,
$$y \in \partial_P f(x)$$
 if $f(x+z) - f(x) \ge \langle y, z \rangle + O(|z|^2)$.

More stably, $y \in \partial f(x)$ means:

some
$$(x_r, y_r) \to (x, y)$$
 with $f(x_r) \to f(x)$ and $y_r \in \partial_P f(x_r)$.

In particular:

$$\partial f = \left\{ \begin{array}{ll} \nabla f & \text{if } f \text{ smooth} \\ \partial f & \text{if } f \text{ convex.} \end{array} \right.$$

Large subdifferentials

But many Lipschitz functions have subdifferentials with large graph.

Eg: Lipschitz $f: \mathbf{R} \to \mathbf{R}$ can have

$$\partial f(x) = [0,1]$$
 for all x .

(Benoist, Borwein-Girgensohn-Wang, 1998)

Subdifferentials of **convex** (or prox-regular) $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ do have **thin** graphs:

graph ∂f *n*-dimensional

as a Lipschitz manifold (Minty, 1962).

Regularity for convex minimization

For convex f,

$$(\partial f)^{-1}(y) = \operatorname{argmin}\{f - \langle y, \cdot \rangle\}.$$

 $(\partial f)^{-1}$ is **generically** single-valued and differentiable (Mignot, 1976)...

...but not Lipschitz, necessarily.

If $(f')^{-1}$ is the Lebesgue singular function, strong regularity of ∂f fails for all data y.

But what if f is more "concrete", or "tame" (Grothendieck)?

Semi-algebraic sets

Polynomial level sets in \mathbb{R}^n :

$$\big\{x:p(x)\leq 0\big\}.$$

Basic sets are finite intersections of these and their complements.

Finite unions of basic sets are called **semi-algebraic**.

A prevalent property, often easy to recognize, since linear projection maps preserve it (Tarski-Seidenberg).

Semi-algebraic sets are finite unions of manifolds, so have **dimension**.

We call *n*-dimensional subsets of $\mathbb{R}^n \times \mathbb{R}^n$ thin.

Generic regularity and stationarity

Following Sard...(Drusvyatskiy-loffe-L 2013–15)

Theorem Consider a semi-algebraic set-valued mapping $\Phi \colon \mathbf{R}^n \rightrightarrows \mathbf{R}^n$ with thin graph. For generic data y, strong regularity holds at every solution $x \in \Phi^{-1}(y)$.

Theorem The subdifferential of a semi-algebraic function has thin graph.

So, finding stationary points for any generically perturbed semi-algebraic function is well behaved.

For classical nonlinear programs, much more holds (Spingarn-Rockafellar '79): second-order sufficiency...

Can we extend?

Identifiability and "active set" philosophy

Many algorithms for minimizing functions f (maybe nonsmooth, high-dimensional, nonconvex) generate sequences satisfying

$$x_k \to \bar{x}$$
 $y_k \to 0$
 $f(x_k) \to f(\bar{x})$ $y_k \in \partial f(x_k)$

Example. Proximal point: $\rho(x_k - x_{k+1}) \in \partial f(x_{k+1})$.

A manifold \mathcal{M} around \bar{x} is identifiable (Wright 1993) when

- $f|_{\mathcal{M}}$ is $C^{(2)}$ -smooth
- every such sequence (x_k) eventually lies in \mathcal{M} .

Then minimizing f reduces to minimizing the low-dimensional smooth function $f|_{\mathcal{M}}$.

Example
$$f = \delta_X - \langle y, \cdot \rangle$$
:

Example: matrix nuclear norm regularization

Rank-constrained optimization (Candès-Recht, -Tao '09) relaxes to

$$\min_{X \in \mathbf{R}^{m \times n}} \left\{ g(X) + \|X\|_* \right\}$$

for smooth convex g and nuclear norm $\|\cdot\|_* = \sum_i \sigma_i$.

Optimal \bar{X} and $\nabla g(\bar{X})$ have simultaneous SVD, singular values

$$\sigma_i(\nabla g(\bar{X})) \leq 1.$$

Equality holds if $\sigma_i(\bar{X}) > 0$. Generically, the converse holds, and $g + \|\cdot\|_*$ shows local smooth quadratic growth on the manifold

$${X : rank X = rank \bar{X}}.$$

Huge examples (Netflix, Yahoo-Music...), $m \sim 10^6$, $n \sim 10^5$ but low-rank \bar{X} : solvable via smooth reduction (Hsieh-Olson '14).

Generic identifiability

Bolte-Daniilidis-L '11 (convex case) and Drusvyatskiy-loffe-L '14.

Consider any semi-algebraic closed function f_0 . A generic linear perturbation $f = f_0 - \langle y, \cdot \rangle$ has a finite set of stationary points $x \in (\partial f)^{-1}(0)$, each satisfying:

- f is prox-regular at x for 0
- ▶ $0 \in ri \partial_P f(x)$ (strict complementarity)
- f has the identifiable manifold

$$\mathcal{M} = \{z \text{ near } x : 0 \text{ near } \partial f(z)\}$$

- $ightharpoonup \partial f$ is strongly regular at x for 0
- ▶ 2nd-order sufficiency... $f|_{\mathcal{M}}$ grows quadratically around x.

Metric regularity, transversality, and alternating projections

Strong regularity strengthens metric regularity:

$$(x,y)\mapsto rac{dig(x,\Phi^{-1}(y)ig)}{dig(y,\Phi(x)ig)}$$
 locally bounded.

Theorem (loffe '07). Any semi-algebraic closed Φ is metrically regular for generic data y at all solutions $x \in \Phi^{-1}(y)$.

Example. Given semi-algebraic closed sets $X, Y \subset \mathbb{R}^n$, under a generic perturbation w, the intersection of X and Y-w is everywhere transversal.

Transversality (alone!) implies that alternating projections (von Neumann '33) converges linearly (Drusvyatskiy-loffe-L '13).

Summary

- Semi-algebraic generalized equations with thin graphs are strongly regular for generic data.
- Example: stationary points of semi-algebraic functions.
- Identifiable manifolds exist generically in semi-algebraic optimization, and the 2nd-order sufficient conditions hold.
- Generic transversality and alternating projections.