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Inversion and strong regularity
Problem: Given a set-valued mapping Φ: Rn →→ Rn, find a
solution x with data y ∈ Φ(x)︸︷︷︸. Equivalently, x ∈ Φ−1(y)︸ ︷︷ ︸.

easy to compute hard

Strong regularity (Robinson ’80) then means

graph Φ = graph(G−1) around (x , y)

for some single-valued Lipschitz G .

Crucial for sensitivity, algorithms. . . (Dontchev-Rockafellar ’14)

Example (Banach, 1922) Mappings

Φ = identity + single-valued contraction

are strongly regular, and the iteration

x ← y + x − Φ(x) converges to Φ−1(y).
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Sard’s Theorem (1942)

For smooth Φ: Rn → Rn,
strongly regularity holds
when ∇Φ is invertible.
(Inverse function theorem)

For generic y (almost all
in Lebesgue measure),
true at every x ∈ Φ−1(y).

What if Φ is more general: nonsmooth or set-valued?

I Optimization: Φ a subdifferential.

I Variational inequalities: Φ = smooth map + normal cone.

Structured: Saigal-Simon ’73, Spingarn-Rockafellar ’79,
Alizadeh-Haeberly-Overton ’97, Shapiro ’97, Pataki-Tunçel ’01.

Unstructured? Clearly Φ must have “n-dimensional” graph.
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Subdifferentials and stationary points

Suppose Φ = ∂f , for
a function f : Rn → R̄,
so Φ−1(0) consists of
stationary points.

As usual, y ∈ ∂P f (x) if
f (x + z)− f (x) ≥

〈y , z〉+ O(|z |2).

More stably, y ∈ ∂f (x) means:

some (xr , yr )→ (x , y) with f (xr )→ f (x) and yr ∈ ∂P f (xr ).

In particular:

∂f =

{
∇f if f smooth
∂f if f convex.
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Large subdifferentials

But many Lipschitz functions have
subdifferentials with large graph.

Eg: Lipschitz f : R→ R can have

∂f (x) = [0, 1] for all x .

(Benoist, Borwein-Girgensohn-Wang, 1998)

Subdifferentials of convex (or prox-regular) f : Rn → R̄ do have
thin graphs:

graph ∂f n-dimensional

as a Lipschitz manifold (Minty, 1962).
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Regularity for convex minimization

For convex f ,

(∂f )−1(y) = argmin{f − 〈y , ·〉}.

(∂f )−1 is generically single-valued
and differentiable (Mignot, 1976). . .

. . . but not Lipschitz, necessarily.

If (f ′)−1 is the Lebesgue singular function,
strong regularity of ∂f fails for all data y .

But what if f is more “concrete”, or “tame” (Grothendieck)?

7 / 14



Semi-algebraic sets

Polynomial level sets in Rn:{
x : p(x) ≤ 0

}
.

Basic sets are finite intersections of these and their complements.

Finite unions of basic sets are called semi-algebraic.

A prevalent property, often easy to recognize,
since linear projection maps preserve it (Tarski-Seidenberg).

Semi-algebraic sets are finite unions of manifolds,
so have dimension.

We call n-dimensional subsets of Rn × Rn thin.
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Generic regularity and stationarity

Following Sard. . . (Drusvyatskiy-Ioffe-L 2013–15)

Theorem Consider a semi-algebraic set-valued mapping
Φ: Rn →→ Rn with thin graph. For generic data y ,
strong regularity holds at every solution x ∈ Φ−1(y).

Theorem The subdifferential of a semi-algebraic function
has thin graph.

So, finding stationary points for any generically perturbed
semi-algebraic function is well behaved.

For classical nonlinear programs, much more holds
(Spingarn-Rockafellar ’79): second-order sufficiency. . .

Can we extend?
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Identifiability and “active set” philosophy
Many algorithms for minimizing functions f (maybe nonsmooth,
high-dimensional, nonconvex) generate sequences satisfying

xk → x̄ yk → 0

f (xk)→ f (x̄) yk ∈ ∂f (xk)

Example. Proximal point: ρ(xk − xk+1) ∈ ∂f (xk+1).

A manifold M around x̄ is identifiable (Wright 1993) when
I f |M is C (2)-smooth
I every such sequence (xk) eventually lies in M.

Then minimizing f reduces to
minimizing the low-dimensional
smooth function f |M.

Example f = δX − 〈y , ·〉:
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Example: matrix nuclear norm regularization

Rank-constrained optimization (Candès-Recht, -Tao ’09) relaxes to

min
X∈Rm×n

{
g(X ) + ‖X‖∗

}
for smooth convex g and nuclear norm ‖ · ‖∗ =

∑
i σi .

Optimal X̄ and ∇g(X̄ ) have simultaneous SVD, singular values

σi
(
∇g(X̄ )

)
≤ 1.

Equality holds if σi (X̄ ) > 0. Generically, the converse holds, and
g + ‖ · ‖∗ shows local smooth quadratic growth on the manifold

{X : rankX = rank X̄}.

Huge examples (Netflix, Yahoo-Music...), m ∼ 106, n ∼ 105

but low-rank X̄ : solvable via smooth reduction (Hsieh-Olson ’14).
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Generic identifiability

Bolte-Daniilidis-L ’11 (convex case) and Drusvyatskiy-Ioffe-L ’14.

Consider any semi-algebraic closed function f0. A generic linear
perturbation f = f0 − 〈y , ·〉 has a finite set of stationary points
x ∈ (∂f )−1(0), each satisfying:

I f is prox-regular at x for 0

I 0 ∈ ri ∂P f (x) (strict complementarity)

I f has the identifiable manifold

M = {z near x : 0 near ∂f (z)}

I ∂f is strongly regular at x for 0

I 2nd-order sufficiency. . . f |M grows quadratically around x .
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Metric regularity, transversality, and alternating projections

Strong regularity strengthens metric regularity:

(x , y) 7→
d
(
x ,Φ−1(y)

)
d
(
y ,Φ(x)

) locally bounded.

Theorem (Ioffe ’07). Any semi-algebraic closed Φ is metrically
regular for generic data y at all solutions x ∈ Φ−1(y).

Example. Given semi-algebraic closed sets
X ,Y ⊂ Rn, under a generic perturbation
w , the intersection of X and Y − w is
everywhere transversal.

Transversality (alone!) implies that
alternating projections (von Neumann ’33)
converges linearly (Drusvyatskiy-Ioffe-L ’13).
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Summary

I Semi-algebraic generalized equations with thin graphs are
strongly regular for generic data.

I Example: stationary points of semi-algebraic functions.

I Identifiable manifolds exist generically in semi-algebraic
optimization, and the 2nd-order sufficient conditions hold.

I Generic transversality and alternating projections.
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