
A few major encounters with Terry

• 1974 Introduced to Terry in my first Ph.D. year in the Department of
Operations Research at Stanford University on his visit as a seminar speaker

• 1978 Met Terry’s first Ph.D. graduate Lynn McLinden (and Terry) at a
conference in Erice Italy: 2 significant events at this meeting

• 2004 Terry was the first plenary speaker at the inaugural triennial ICCOPT
held at Rensselaer Polytechnic Institute

• 2005 Was honored to be invited to help celebrate Terry’s 70 birthday hosted
by Jie Sun

• 2007 Guest of Terry at his resort home in Whidbey Island off Seattle.

From my Ph.D. days till now and extending to the future, Terry’s work lays

the foundation for all of my work (and of course others too).
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Happy 80th Birthday, Terry!

And many more
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Research is built on areas pioneered by Terry:

• Convexity and beyond

• Stochastic programming

• Deviation and risk measures

• Stochastic variational inequalities.
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Contents of Presentation

• State of the art of deterministic non-cooperative games

• A class of mean-deviation-composite game

• Some challenging issues

• Inner versus outer iterations: best response and sample ap-

proximations

• The case of private recourse
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The abstract generalized Nash equilibrium problem
deterministic, one stage, coupled constraints

N selfish players each (labeled i = 1, · · · , N) with

• a moving strategy set Ξi(x−i) ⊆ Xi ⊆ Rni, and

• a cost function ζi(•, x−i) : Rni → R,

both dependent on the rivals’ strategy tuple x−i ,
(
xi

′)
i ′ 6=i
∈ R−i ,

∏
i ′ 6=i

Rni ′.

Anticipating rivals’ strategy x−i, player i solves: minimize
xi∈Ξi(x−i)

ζi(x
i, x−i)

A Nash equilibrium (NE) is a strategy tuple x∗ ,
(
x∗, i
)N
i=1

such that

x∗, i ∈ argmin
xi∈Ξi(x∗,−i)

ζi(x
i, x∗,−i), ∀ i = 1, · · · , N.

In words, no player can improve individual objective by unilaterally deviating
from an equilibrium strategy.

The uncoupled case: Ξi(x−i) = Xi for all i = 1, · · ·N .
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State of the art

• ζi(x) is finite valued for all x ∈ X ,
N∏
i=1

Xi;

• ζi(xi, x−i) is convex in xi for fixed x−i (an advanced, albeit limited, treatment
of nonconvexity is possible)

• algorithmically, ζi(•, x−i) is required to be continuously differentiable for
treatment by a variational approach

• the partial gradient ∇xiζi(x) is required to be continuously differentiable,
with dominant ∇2

xiζi(x) over ∇2
xixi′

ζi(x) for i′ 6= i, for the convergence of the
best-response algorithm

• convergence of the best-response algorithm is so far restricted to the un-
coupled case

• other solution approaches exist, e.g., under monotonicity; but the best-

response approach is the most effective in a distributed environment where

communication among agents is limited.
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A class of mean-deviation composite game

ζi(x) , θi(x)︸ ︷︷ ︸
deterministic first-stage
objective

+ IE

 ψi(x, ω̃)︸ ︷︷ ︸
second-stage

quadratic recourse


+ λi︸︷︷︸

positive weight

Di [ψi(x, ω̃) ]︸ ︷︷ ︸
deviation measure

,

where ψi(x;ω) , minimum
zi

 f i(ω) +
∑
j 6=i

G ij(ω)xj︸ ︷︷ ︸
no xi


T

zi + 1
2

( zi )T Q i︸︷︷︸
spsd

zi

subject to
N∑
j=1

C ij(ω)xj + D i︸︷︷︸
simple recourse

zi ≥ ξ i(ω).
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Several technical challenges

• Possible infeasibility and/or unboundedness of recourse functions jeopardizes
a constructive treatment. [Remedy: relatively complete recourse function]

• Convexity of ζi(•, x−i) could be jeopardized by a general deviation measure
that has the following representation:

D(Z) , IEZ − inf
Q∈Q

IE [ZQ] ,

with Q being the risk envelope associated with D (Rockafellar, Uryasev, and
Zabarankin 2006) [Remedy: focus on a class of deviations]

• The possible non-uniqueness of the minimizer of the value function ψi(x;ω),
jeopardizes the differentiability in xi [Remedy: regularization]

• The expectation operator needs to be approximated [Remedy: sampling
and/or progressive hedging]

• Monotonicity in a resulting variational formulation, if applicable, is highly
unlikely [Remedy: best-response]

• Coupled first-stage constraints Ξ i(xi) and coupled second-stage constraints

in recourse complicate treatment [Remedy: focus on the uncoupled case]
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Relatively complete recourse

For all x ∈ X and almost all ω ∈ Ω,

[
(D i )Tvi = 0, vi ≥ 0

] ====>
primal feas

 N∑
j=1

C ij(ω)xj − ξ i(ω)

T vi ≥ 0,

D izi ≥ 0, Qzi = 0
====>

primal bddness

 f i(ω) +
∑
j 6=i

G ij(ω)xj

T zi ≥ 0.

Dual program:

maximize
zi, vi

 ξ i(ω)−
N∑
j=1

C ij(ω)xj

T vi − 1
2

( zi )TQ izi

subject to −Q izi + (D i )Tvi = f i(ω) +
∑
j 6=i

G ij(ω)xj

and vi ≥ 0.
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Classes of deviation measures

• quantile or CVAR based: for γ ∈ [0,1], let

DQD
γ (Z) , IE

{
γ [Z − κγ(Z) ]+ + ( 1− γ ) [Z − κγ(Z) ]−

}
= minimum

t∈R
IE
[
γ (Z − t )+ + ( 1− γ ) (Z − t )−

]
,

with the minimizer being the γ-quantile κγ(Z) of the random variable Z.

• absolute semi-deviation (ASD):

DASD(Z) , IE [Z − IEZ]+ = maximum
γ∈[0,1]

DQD
γ (Z),

= max
γ∈[0,1]

{
min
t∈R

IE
[
γ (Z − t )+ + ( 1− γ ) (Z − t )−

]}
proved by Ogryczak and Ruszczyński 2002

• absolute deviation (AD):

DAD(Z) , IE | Z − IEZ | = 2 IE [Z − IEZ ]+ .

Want a unified treatment of the above deviation functions.
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A unified mean-deviation function

For a parameter λ > 0, let Hλ(z; t; γ) be a function of the triple (z; t; γ) and
consider

ϕ̂λ(x) , max
γ∈Γ

min
t∈R

IE [Hλ(ψ(x; ω̃); t; γ) ] , where Γ ,
[
γ, γ

]
.

Under a boundedness assumption on t, may interchange max-min:

ϕ̂λ(x) = min
t∈R

max
γ∈Γ

IE [Hλ(ψ(x; ω̃); t; γ) ]

= min
t∈R

max
{

IE
[
Hλ(ψ(x; ω̃); t; γ)

]
, IE [Hλ(ψ(x; ω̃); t; γ) ]

}
.

Special cases: (both with a nonsmooth Hλ)

• Hλ(z; t; γ) , z + λ

{
t+

1

1− γ
[z − t]+

}
and Γ = {γ} lead to a mean-CVAR

deviation function

• Hλ(z; t; γ) , t + ( 1 − λ + λ γ ) ( z − t ) + λ [ z − t ]+ and Γ = [0,1] lead to a

mean-absolute semideviation function.
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Assumptions

For each player i = 1, · · · , N ,

(H1): Hi;λi(z; ti; γi) is Lipschitz continuous; strictly increasing in z for fixed
(ti, γi); convex in (z, ti) jointly for fixed γi; and linear in γi for fixed (z, ti).

(H2): a constant ηi > 0 exists such that |Hi;λi(z; ti; γi)| ≤ ηi(1 + ‖z‖) for all
(t; γi) ∈ R× Γi and all z of interest.

(T): there exists a compact interval Ti such that the function hi;λi(x; ti; γi) ,
IE
[
Hi;λi(ψi(x

i, x−i; ω̃); ti; γi)
]

satisfies

minimum
ti ∈R

hi;λi(x; ti; γi) = minimum
ti∈Ti

hi;λi(x; ti; γi)

for all x ∈ X and every γi ∈ Γi.

Resulting in the game with non-differentiable, convex objectives: minimize
xi∈X i, ti∈Ti

[
θi(x

i, x−i)+

max
(

IE
[
Hi;λi(ψi(x

i, x−i; ω̃); ti; γ i)
]
, IE

[
Hi;λi(ψi(x

i, x−i; ω̃); ti; γi)
] ) ]


N

i=1
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Private recourse

ψi(xi;ω) , minimum
zi

(
f i(ω)

)T
zi + 1

2
( zi )TQ izi

subject to C ii(ω)xi +D izi ≥ ξ i(ω)

leads to the following game:minimize
xi∈X i, ti∈Ti

 θi(xi, x−i) + ϕi(x
i; ti)︸ ︷︷ ︸

private



N

i=1

,

where

ϕi(x
i; ti) , max

(
IE
[
Hi;λi(ψi(x

i; ω̃); ti; γ i)
]
, IE

[
Hi;λi(ψi(x

i; ω̃); ti; γi)
] )

remains nonsmooth, albeit separable in players’ individual variables.
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Stochastic best-response: set-up
Given vector y ∈ X and tuples: L of positive sample sizes {Li}Ni=1, samples{
ωij
}Li

j=1
, and positive scalars

{
pij
}Li

j=1
for each i = 1, · · · , Li, and with T ,

N∏
i=1

Ti,

let BR(y;L;ω; p) be

argmin
x∈X; t∈T

{
N∑
i=1

[
θi(x

i, y−i) + ϕi,Li
(xi; ti;ω

i; pi) + 1
2
‖xi − yi ‖2

]}

=

 argmin
xi∈X i; ti∈Ti

[
θi(x

i, y−i) + ϕi,Li
(xi; ti;ω

i; pi) + 1
2
‖xi − yi ‖2

]
︸ ︷︷ ︸

separable sample-based optimization in (xi, ti)



N

i=1

,

where ϕi,Li
(xi; ti;ω i; pi) ≈ ϕi(xi; ti), such as a sample average approximation:

max

 Li∑
j=1

pij
[
Hi;λi(ψi(x

i;ωij); ti; γ i)
]
,

Li∑
j=1

pij
[
Hi;λi(ψi(x

i;ωij); ti; γi)
] .
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Stochastic best-response

Joint sampling and best-response

Step 0. Set ν = 0 and generate Lν;i samples
{
ων,i1 , · · · , ων;i

Lν;i

}
with correspond-

ing probabilities
{
p ν;i

1 , · · · , p ν;i
Li

}
for i = 1, · · · , N .

Step 1. Solve BR(xν;Lν;ω ν; p ν) for i = 1, · · · , N .

Step 2. Set ν ← ν + 1. Update {Lν;i}Ni=1, samples
{
ω ν;i
j

}Lν;i

j=1
, and scalars{

p ν;i
j

}Lν;i

j=1
. �

• Proof of almost sure convergence is in progress; based on proof in determin-
istic case (contraction) and statistical properties of sampling approximation
of expectation.

• Each best-response subproblem BR(xν;Lν;ω ν; p ν) is a min-max program in-

volving the (non-differentiable) sampled recourse function ψi(xi;ωij) and pos-

sible non-smoothness in the mean-deviation function Hi;λi(ψi(x
i;ωij); ti; γi).
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Coupled second-stage constraints

Recall recourse given by dual program

maximize
zi, vi

 ξ i(ω)−
N∑
j=1

C ij(ω)xj

T vi − 1
2

( zi )TQ izi −
s

2
( vi )Tvi

subject to −Q izi + (D i )Tvi ≤ f i(ω) +
∑
j 6=i

G ij(ω)xj.

To ensure differentiability, regularize both primal and dual variables:

maximize
zi, vi

 ξ i(ω)−
N∑
j=1

C ij(ω)xj

T vi − 1
2

( zi )TQ izi −
s

2

[
( zi )Tzi + ( vi )Tvi

]
subject to −Q izi + (D i )Tvi = f i(ω) +

∑
j 6=i

G ij(ω)xj

and vi ≥ 0.

Let ψs;i(x;ω) denote optimal objective value. For fixed s > 0, ψs;i is Lipschitz

and differentiable in xi for all fixed (x−i, ω) such that constraint is feasible.
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Smoothing the mean-deviation function

For s > 0, let

• max(a1, a2) ≈ s log [exp(a1/s) + exp(a2/s)] be an exponential smoothing of
the pointwise max operator; and let

• Hs;i;λi ≈ Hi;λi be a smooth approximation of Hi;λi.

Leading to the following smoothed game:

{
minimize
xi∈X i, ti∈Ti

(
θi(x

i, x−i) + ĥapprx
i;λi;s

(x; ti) +
s

2
t2i

)}N
i=1

,

where ĥapprx
i;λi;s

(x; ti) is given by

s log

{
exp

(
IE

[
1

s
Hi;λi;s(ψi;s(x; ω̃); ti; γ i)

])
+ exp

(
IE

[
1

s
Hi;λi;s(ψi;s(x; ω̃); ti; γi)

])}
.

At this point, there remain two steps: sampling and best response.
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