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Conjugate duality studies parametric optimization problems

minimize F (x, u) over x ∈ X, (P)

where the parameter u takes values in a locally convex space U in
separating duality with Y . If F is convex on X × U , then

• the optimum value ϕ(u) is convex on U ,

• the associated Lagrangian

L(x, y) = inf
u∈U

{F (x, u)− 〈u, y〉}.

is convex concave on X × Y ,

• the conjugate of ϕ can be expressed as

ϕ∗(y) = sup
u∈U

{〈u, y〉 − ϕ(u)} = − inf
x∈X

L(x, y).
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• If ϕ is closed, then there is no duality gap: ϕ = ϕ∗∗.

• If ϕ is subdifferentiable at u, then x ∈ X solves (P) if and
only if (x, y) is a saddle point of L− 〈·, y〉 for some y ∈ Y .

Note that we have not assumed that X is locally convex.

• In stochastic optimization, this will allow us to choose a
large enough X so that primal solutions exist and ϕ is
closed.

• On the other hand, we will have to work a bit harder to find
explicit expressions for ϕ∗ and the saddle point conditions.
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Let (Ω,F , (Ft)
T
t=0, P ) be a filtered probability space and

consider the parametric optimization problem

minimize Ef(x, u) :=

∫

f(x(ω), u(ω), ω)dP (ω) over x ∈ N ,

• N = {(xt)
T
t=0 | xt ∈ L0(Ω,Ft, P ;R

d)},

• u ∈ Lp(Ω,F , P ;Rm) is a fixed parameter,

• f : Rd(T+1) × R
m × Ω → R is a convex normal integrand,

• the integral is defined as +∞ unless the positive part of
the integrand is integrable.
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Example 1 (Inequality constraints) If

f(x, u, ω) =

{

f0(x, ω) if fj(x, ω) + uj ≤ 0 for j = 1, . . . ,m,

+∞ otherwise,

where fj are convex normal integrands, then ϕ(u) is the
optimal value of the problem

minimize
x∈N

Ef0(x(ω), ω)

subject to fj(x(ω), ω) + uj(ω) ≤ 0 j = 1, . . . ,m.

This was studied by [Rockafellar and Wets, 1978] in the case
of bounded strategies.
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Example 2 (Shadow price of information) If
m = d(T + 1) and

f(x, u, ω) = h(x+ u, ω),

where h is a convex normal integrand, then the problem
becomes the nonadapted perturbation

minimize
x∈N

Eh(x+ u).

of the stochastic optimization problem

minimize
x∈N

Eh(x).

This was studied in [Rockafellar and Wets, 1976].
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Example 3 (Optimal stopping) If d = m = 1 and

f(x, u, ω) =

{

∑T

t=0 xtZt(ω) if x ≥ 0 and
∑T

t=0 xt ≤ u,

+∞ otherwise,

for an adapted real-valued process Z, the problem becomes

minimize
x∈N+

E
T
∑

t=0

xtZt subject to
T
∑

t=0

xt ≤ u P -a.s.

When u = 1, this is a convex relaxation of the optimal
stopping problem. The relaxation does not affect the optimal
value.
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Example 4 (Optimal investment) Let m = 1 and

f(x, u, ω) = v

(

u−
T−1
∑

t=0

xt ·∆st+1(ω)

)

where s is an adapted price process and v : R → R is convex.
The problem becomes

minimize
x∈N

Ev

(

u−
T−1
∑

t=0

xt ·∆st+1

)

which is the problem of optimal investment with liability u.
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Example 5 (Optimal investment in illiquid markets) Let

f(x, u, ω) =

{

∑T

t=0 vt(St(∆xt, ω) + ut) if xt ∈ Dt(ω), xT = 0,

+∞ otherwise

where

• St : R
d × Ω → R is such that St(·, ω) are convex with

St(0, ω) = 0 and St(x, ·) are Ft-measurable,

• ω 7→ Dt(ω) is Ft-measurable with Dt(ω) closed convex and
0 ∈ Dt(ω),

• vt : R → R is convex.

The problem becomes

minimize
x∈ND

E

T
∑

t=0

vt(St(∆xt) + ut).
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We will apply conjugate duality with

F (x, u) = Ef(x, u),

X = N ,

U = Lp(Ω,F , P ;Rm),

Y = Lq(Ω,F , P ;Rm),

〈u, y〉 = E(u · y).

• Our first aim is to show that, one often has

ϕ∗(y) = − inf
x∈N

L(x, y) = − inf
x∈N∞

L(x, y)

where N∞ := N ∩ L∞.

• This yields explicit expressions for ϕ∗ in many situations.
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Let
ϕ̃(u) = inf

x∈N∞
Ef(x, u),

N⊥ = {v ∈ L1(Ω,F , P ;Rn) |E(x · v) = 0 ∀x ∈ N∞},

l(x, y, ω) = inf
u∈Rm

{f(x, u, ω)− u · y}.

Theorem 1 If domEl(·, y) ∩ N∞ ⊆ dom ϕ̃, then

ϕ̃∗(y) = − inf
x∈N∞

El(x, y).

If in addition, there exists v ∈ N⊥ with ϕ̃∗(y) = Ef∗(v, y), then

ϕ∗(y) = ϕ̃∗(y).

Lemma 2 (Perkkiö, 2014) If x ∈ N , v ∈ N⊥ and

E[x · v]+ ∈ L1, then E(x · v) = 0.
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Example 6 (Inequality constraints) In the model

minimize
x∈N

Ef0(x(ω), ω)

subject to fj(x(ω), ω) + uj(ω) ≤ 0 j = 1, . . . ,m,

the conditions of Theorem 1 hold provided fj(x, ω) ∈ Lp for
all x ∈ R

n. This follows from the Mackey-continuity of
El(·, y) on L∞, which in turn follows from
Rockafellar, Integrals which are convex functionals II, 1971.
We have

l(x, y, ω) =

{

f0(x, ω) +
∑m

j=1 yjfj(x, ω) if y ≥ 0,

−∞ otherwise

but, in general, don’t have explicit expressions for ϕ∗(y).
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Example 7 (Shadow price of information) When
f(x, u, ω) = h(x+ u, ω), the conditions of Theorem 1 hold as
soon as Eh ∩ Lp. We get

ϕ∗(y) =

{

Eh∗(y) if Etyt = 0 ∀t,

∞ otherwise

and, in particular,

ϕ∗∗(0) = sup
y∈N⊥

E[−h∗(y)] = sup
y∈N⊥

E inf
x∈Rn

{h(x)− x · y},

hence the name shadow price of information; see [Rockafellar
and Wets, 1976], [Back and Pliska, 1987] and [Davis, 1992].
This allows for MC much as in [Rogers, 2002].
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Example 8 (Optimal stopping) The optimal value of the
optimal stopping problem

maximize
x∈N+

E

T
∑

t=0

xtZt subject to
T
∑

t=0

xt ≤ 1

equals that of

minimize
y∈M∞

y0 subject to y ≥ Z+,

where M∞ is the set of bounded martingales and Z+ is the
positive part of Z.
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Example 9 (Optimal investment) Assume that, ∀x ∈ N∞

∃u ∈ Lp such that EV (u−
∑T−1

t=0 xt ·∆st+1) <∞, then

ϕ∗∗(u) = sup
y∈Q

E[uy − V ∗(y)],

where Q is the set of positive multiples of martingale densities
y ∈ Y , i.e. densities dQ/dP of probability measures Q≪ P
under which the price process s is a martingale.
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• The above expressions for ϕ∗∗ provide dual representations
of the optimal value ϕ provided ϕ is proper and lower
semicontinuous (lsc), i.e.

lim inf
ν→∞

ϕ(uν) ≥ ϕ(u)

whenever uν → u in Lp.

• The traditional “direct method” assumes that Ef is jointly
lsc and Ef(·, u) is inf-compact uniformly in u.

• In financial models, the topological inf-compactness
condition often fails but there is a more general measure
theoretic counterpart that works well in N .
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Theorem 3 (Komlós) If (xν)∞ν=1 ⊂ L0(Ω,F , P ;Rn) is
almost surely bounded in the sense that

sup
ν

|xν(ω)| <∞ P -a.s.

then there is a sequence of convex combinations
x̄ν ∈ co{xµ |µ ≥ ν} that converges almost surely in L0.

This yields the following infinite-dimensional version of
Theorem 8.4 from Convex Analysis.

Theorem 4 Let C : Ω ⇒ R
n be closed convex-valued and

F -measurable. If {x ∈ N | x ∈ C∞ a.s.} = {0}, then every
sequence in {x ∈ N | x ∈ C a.s.} is almost surely bounded.
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Theorem 5 Assume that f is bounded from below and that

{x ∈ N| f∞(x(ω), 0, ω) ≤ 0 a.s.}

is a linear space. Then

ϕ(u) = inf
x∈N

Ef(x, u)

is closed on Lp and the inf is attained for every u ∈ Lp.

The lower bound has been relaxed in [Perkkiö, 2014].
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Example 10 (Optimal stopping) When

f(x, u, ω) =

{

−
∑T

t=0 xtZt(ω) if x ≥ 0 and
∑T

t=0 xt ≤ u,

+∞ otherwise,

we have f∞ = f and

{x ∈ N| f∞(x, 0) ≤ 0 a.s.} = {0},

so the linearity condition is always satisfied.
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Example 11 (Shadow price of information) When

f(x, u, ω) = h(x+ u, ω),

the linearity condition means that

{x ∈ N |h∞(x) ≤ 0 -a.s.}

is linear.
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Example 12 (Optimal investment) When

f(x, u, ω) =

{

v
(

u−
∑T−1

t=0 xt ·∆St+1(ω)
)

if xt ∈ Dt(ω),

+∞ otherwise

we get

f∞(x, u, ω) =

{

v∞
(

u−
∑T−1

t=0 xt ·∆St+1(ω)
)

if xt ∈ D∞
t (ω),

+∞ otherwise.

If v is nonconstant and Dt(ω) = R
J , the linearity condition

becomes the no-arbitrage condition

x ∈ N :
∑

xt ·∆St+1 ≥ 0 =⇒
∑

xt ·∆St+1 = 0.

Example 13 With transaction costs, we get the robust
no-arbitrage condition introduced by [Schachermayer, 2004].
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The linearity condition may hold even under arbitrage.

Example 14 It holds if S∞
t (x, ω) > 0 for x /∈ R

J
−.

Example 15 In [Çetin and Rogers, 2007] with

St(x, ω) = x0 + st(ω)ψ(x
1)

one has S∞
t (x, ω) = x0 + st(ω)ψ

∞(x1). When inf ψ′ = 0 and
supψ′ = ∞ we have ψ∞ = δR−

, so the condition in
Example 14 holds.

Example 16 If St(·, ω) = st(ω) · x for a componentwise
strictly positive price process s and D∞

t (ω) ⊆ R
J
+ (infinite

short selling is prohibited) then linearity condition holds.
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Theorem 6 Assume that ∂ϕ(u) 6= ∅ and that for every
y ∈ ∂ϕ(u) there exists v ∈ N⊥ such that ϕ∗(y) = Ef ∗(v, y).
Then an x ∈ N solves (P) if and only if it is feasible and
there exist y ∈ Y and v ∈ N⊥ such that

(v, y) ∈ ∂f(x, u)

P -almost surely, or equivalently, if

v ∈ ∂xl(x, y) and u ∈ ∂y[−l](x, y)

P -almost surely.
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Example 17 In the model with constraints, the optimality
condition of Theorem 6 means that

fj(x) + uj ≤ 0,

x ∈ argmin
z∈Rn

{f0(z) +
m
∑

j=1

yjfj(z)− z · v},

yjfj(z) = 0 j = 1, . . . ,m,

yj ≥ 0

P -almost surely. [Rockafellar and Wets, 1978] give sufficient
conditions for the existence of an optimal x ∈ N∞ and the
corresponding dual variables y ∈ Y and v ∈ N⊥.
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Example 18 Consider the optimal investment problem in
liquid markets and assume that EV is finite on Lp and EV ∗ is
proper in Lq. Then an x ∈ N solves (P) if and only if it is
feasible and there exists a martingale density y for s such that

y ∈ ∂V (u−
T−1
∑

t=0

xt ·∆st+1) P -a.s.

much like e.g. in [Schachermayer, 2001] or [Biagini and
Frittelli, 2008] in continuous time.
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• Continuous time models of financial mathematics are often
expressed in terms of the stochastic integral (wealth
process) of the portfolio process wrt the price process.

• However, the definition of (x, u) 7→ Ef(x, u) relies on
scenariowise description of f(x, u).

• Our approach is first to consider strategies of bounded
variation and then take the lsc hull of the the objective Ef

◦ For BV strategies, stochastic integrals are given pathwise
and the dual can often be written down explicitly.

◦ Taking the lsc hull of Ef gives rise to stochastic
integrals and it does not affect the dual problem.

◦ Does require conjugation of integral functionals on
spaces of stochastic processes.
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