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Conjugate duality

Emcl*_‘aﬁic optimization | - Conjugate duality studies parametric optimization problems
uality

Closedness criteria

Optimality conditions mlnlmlze F(CE, ’U,) over T & X, (P)

where the parameter u takes values in a locally convex space U in
separating duality with Y. If F'is convex on X X U, then

e the optimum value p(u) is convex on U,
e the associated Lagrangian

L(z,y) = inf {F(z,u) — (u,y)}.

uelU
IS convex concave on X X Y,

e the conjugate of v can be expressed as

o (y) = sup{(u,y) — p(u)} = — inf L(z,y).
uelU xe




Conjugate duality

Stochastic optimization

Duality e If © is closed, then there is no duality gap: ¢ = ¢**.

Closedness criteria

Optimality conditions e If  is subdifferentiable at u, then x € X solves (P) if and
only if (x,y) is a saddle point of L — (-, ) for some y € Y.

Note that we have not assumed that X is locally convex.
e In stochastic optimization, this will allow us to choose a
large enough X so that primal solutions exist and ¢ is

closed.

e On the other hand, we will have to work a bit harder to find
explicit expressions for ©* and the saddle point conditions.
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Stochastic optimization

Let (Q, F, (F;)L_,, P) be a filtered probability space and

puality consider the parametric optimization problem

Closedness criteria
Optimality conditions

minimize Ef(x,u) := /f(x(w),u(w),w)dP(w) over & € N,

o N = {(z4)/=g |2 € L°(Q, Fi, P;RY)},
o u € LP(Q2,F,P;R™) is a fixed parameter,
o f:RUTHD »x R™ x ) — R is a convex normal integrand,

e the integral is defined as +oo unless the positive part of
the integrand is integrable.
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Stochastic optimization

Example 1 (Inequality constraints) /f

Duality
Closedness criteria
Optimality conditions

folz,w) if fi(z,w)+u; <0 forj=1,...,m,

+00 otherwise,

flx,u,w) {

where f; are convex normal integrands, then p(u) is the
optimal value of the problem

migiérj{l/ize Efo(x(w),w)

subject to  fj(z(w),w) +u;j(w) <0 j=1,...,m.

This was studied by [Rockafellar and Wets, 1978] in the case
of bounded strategies.




Stochastic optimization

Example 2 (Shadow price of information) /f

Duality

Closedness criteria m = d(T —|— 1) and

Optimality conditions

flx,u,w) = h(x + u,w),

where h is a convex normal integrand, then the problem
becomes the nonadapted perturbation

minimize Eh(z + u).
reN

of the stochastic optimization problem

minimize Eh(x).
reN

This was studied in [Rockafellar and Wets, 1976].
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Stochastic optimization

Example 3 (Optimal stopping) /fd =m =1 and

Duality
Closedness criteria
Optimality conditions

ZtT:o v, Z(w) ifx >0 and ZZ;O e < u,

+00 otherwise,

f(x,u,w) {

for an adapted real-valued process 7, the problem becomes

T T
minimize F x:/+ subiect to r; < u P-a.s.
TEN ; t 4t J tz_; t >

When v = 1, this is a convex relaxation of the optimal
stopping problem. The relaxation does not affect the optimal
value.




Stochastic optimization

Example 4 (Optimal investment) Let m = 1 and

Duality
Clos.ednefss criterizj\ T_1
Optimality conditions
flr,u,w)=v | u— E Ty - Asiq (W)
t=0

where s is an adapted price process and v : R — R is convex.
The problem becomes

T—1
minimize FEv | u — E Ty - ASpiq
xeN —0

which is the problem of optimal investment with liability wu.




Stochastic optimization

Stochastic optimization

Duality
Closedness criteria
Optimality conditions

Example 5 (Optimal investment in illiquid markets) Let

flz,u,w) = {ZtTo Ve(Se(Azy, w) +uy)  if xy € D(w), 70 =0

+00 otherwise

where

e S :R%x Q — R is such that S;(-,w) are convex with
S¢(0,w) =0 and Si(x,-) are F;-measurable,

e w+ Di(w) is Fy-measurable with D,(w) closed convex and
0e Dt (w),

e v, : R — R is convex.
The problem becomes

T
minimize £ Z Ut(St(ACCt) + U/t).

:EGND —0
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Duality

Stochastic optimization | VV€ WIll apply conjugate duality with

Closedness criteria
Optimality conditions F(:E, U> — Ef(:l?, U)7
X =N,

U = LP(Q, F, P;R™),
Y = LYQ, F, P;R™),
(u,y) = E(u-y).

e Qur first aim is to show that, one often has

p'(y) = — inf L(z,y) = — inf L(z,y)

where N> := NN L*>.
e This yields explicit expressions for ¢* in many situations.
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Duality

Stochastic optimization I—et
S(uw) = inf Ef(r. u
Closedness criteria SO( ) rEN® f( ) )7

Optimality conditions

N+ ={veL'(Q,F P;R")|E(x-v)=0Vz e N°},
l(z,y,0) = inf {f(w,u,w)—u-y}

Theorem 1 /fdom El(-,y) "N N°° C dom @, then

5*(y) = — inf_El(a.y).

xEN >

If in addition, there exists v € N+ with ¢*(y) = Ef*(v,y), then

Lemma 2 (Perkkid, 2014) /fz € N, v € N+ and
Elz-v]t € L, then E(x -v) = 0.
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Duality

Stochastic optimization| EXa@mple 6 (Inequality constraints) /n the model

Closedness criteria L. .
Optimality conditions mlnl%lze Ef() (.CC ((U) ] (U)
Tre

subject to  fj(z(w),w) +u;j(w) <0 j=1,...,m,

the conditions of Theorem 1 hold provided f;(x,w) € L* for
all x € R™. This follows from the Mackey-continuity of
FEl(-,y) on L*, which in turn follows from

Rockafellar, Integrals which are convex functionals I, 1971.
We have

Iz, y,w) = {fo(f’faw) + 3y fi(r,w) ify >0,

— 00 otherwise

but, in general, don't have explicit expressions for ©*(y).
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Duality

tstic optimization Example 7 (Shadow price Of information) When

Closedness criteria f(x,u,w) = h(x 4+ u,w), the conditions of Theorem 1 hold as
Optimality conditions
soon as Eh N LP. We get

. Eh*(y) if By, = 0 Vi,
' (y) = |
00 otherwise

and, in particular,

©**(0) = sup E[-h*(y)] = sup E inf {h(z) — 2y},

yeN -+ yeNL  TERT

hence the name shadow price of information; see [Rockafellar
and Wets, 1976], [Back and Pliska, 1987] and [Davis, 1992].
This allows for MC much as in [Rogers, 2002].
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Duality

o2y Example 8 (Optimal stopping) The optimal value of the

. .
Closedness criteria Opt[ma/ StOppIng prOb/em

Optimality conditions

T T
maximize F x./; subject to T, <1
A ; t 4t J ; t >

equals that of

minimize vy, subjectto y> 27,
yeM>®

where M s the set of bounded martingales and Z is the
positive part of Z .
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Duality

o=y Example 9 (Optimal investment) Assume that, Vo € N

(C)Ios.edlejss critzriz.:\ EIU/ - Lp SUCh that EV( Zt 0 :Ct ASt_|_1) < o0, then
ptimality conaitions
o™ (u) = sup Eluy — V™ (y)],
yeQ

where Q is the set of positive multiples of martingale densities
y € Y, i.e. densities dQ)/dP of probability measures () < P
under which the price process s is a martingale.
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Closedness criteria

Stochastic optimization

Duality e The above expressions for ** provide dual representations

Optimalit conditions of the optimal value ¢ provided ¢ is proper and lower

semicontinuous (lsc), i.e.

lim inf p(u”) > ¢(u)

V—00

whenever ©v¥ — u in LP.

e T[he traditional “direct method” assumes that E'f is jointly
Isc and Ef(-,u) is inf-compact uniformly in w.

e In financial models, the topological inf-compactness
condition often fails but there is a more general measure
theoretic counterpart that works well in .
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Closedness criteria

Stochastic optimization Theorem 3 (K0m|6s) lf- (ij)gil C LO(97F’ P)Rn) [.5

Duality

almost surely bounded in the sense that

Optimality conditions

sup |z”(w)| < oo P-a.s.

v

then there is a sequence of convex combinations
TV € co{x” | u > v} that converges almost surely in L°.

This yields the following infinite-dimensional version of
Theorem 8.4 from Convex Analysis.

Theorem 4 Let C': () = R" be closed convex-valued and
F-measurable. If {x € N'|z € C*> a.s.} = {0}, then every
sequence in {x € N'|z € C a.s.} is almost surely bounded.
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Closedness criteria

Stochastic optimization
Duality

Closedness criteria

Optimality conditions

Theorem 5 Assume that f is bounded from below and that
{r e N| f*(z(w),0,w) <0 as.}
Is a linear space. Then

p(u) = inf Ef(z,u)

Is closed on L? and the inf is attained for every u € LP.

The lower bound has been relaxed in [Perkkio, 2014].
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Closedness criteria

Stochastic optimization

Example 10 (Optimal stopping) When

Duality

Closedness criteria

Optimality conditions

_ ZLO v Z(w) ifx >0 and ZtT:O xy < u,

400 otherwise,

flr,u,w) =

we have f*° = f and
{r e N| f*(x,0) <0 as.} = {0},

so the linearity condition is always satisfied.
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Closedness criteria

Stochastic optimization
Duality

Closedness criteria

Optimality conditions

Example 11 (Shadow price of information) When

flx,u,w) = h(zr + u,w),
the linearity condition means that
{r e N|h*(x) <0 -as}

Is linear.

21 / 27



Closedness criteria

Example 12 (Optimal investment) When

Stochastic optimization
Duality

Closedness criteria

Optimality conditions f(ZU, u, W) — {

v (u — Sy AStH(w)) if r; € Dy(w),

+00 otherwise

we get

o, w) = v>° (u — f:_ol Ty ASt+1(w)) if v, € D (w)
+00 otherwise.

If v is nonconstant and D;(w) = R”, the linearity condition
becomes the no-arbitrage condition

T EN: Y 2 AS >0 = Y x-AS 1 =0.

Example 13 With transaction costs, we get the robust
no-arbitrage condition introduced by [Schachermayer, 2004].
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Closedness criteria

stochastic optimization [ [ he linearity condition may hold even under arbitrage.
Duality

Optimality conditions | Example 14 [t holds if S°(z,w) > 0 for x ¢ R .

Example 15 In [Cetin and Rogers, 2007] with
Se(z,w) = 2° + sy(w)ip(z")

one has S°(x,w) = 2° + s;(w)Y>(z'). When inf+’ = 0 and
sup ¥’ = oo we have ©>° = dr_, so the condition in
Example 14 holds.

Example 16 /f S;(-,w) = s;(w) -  for a componentwise
strictly positive price process s and D{°(w) C R (infinite

short selling is prohibited) then linearity condition holds.
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Optimality conditions

Stochastic optimzaton | Theorem 6 Assume that Op(u) # () and that for every

Duality

Iosedness critria y E agp(u) there eXIStS v E NJ_ SUCh that 90* (y) — Ef* (/U7 y)
Then an x € N solves (P) if and only if it is feasible and

there exist y € Y and v € N'* such that

(v,y) € 0f(x,u)
P-almost surely, or equivalently, if
v e dl(x,y) and wu e d,|—l](x,y)

P-almost surely.

24 / 27




Optimality conditions

;t;’;*i‘taystic cptimzation | Example 17 In the model with constraints, the optimality

Closedness criteria condition of Theorem 6 means that

f](il?) + Uy S O,

r € argmin{ fo(z) + Z yifi(z) — 2z - v},
j=1

zeR"

P-almost surely. [Rockafellar and Wets, 1978] give sufficient
conditions for the existence of an optimal x € N> and the
corresponding dual variables y € Y and v € N'*.
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Optimality conditions

Do eeicoprmizztion | Example 18 Consider the optimal investment problem in

Closedness criteria liquid markets and assume that E'V is finite on L” and EV'* is
e proper in LY. Then an x € N solves (P) if and only if it is
feasible and there exists a martingale density y for s such that

T—-1

y € 0V (u— Z ry - Asy 1) P-as.

t=0

much like e.g. in [Schachermayer, 2001] or [Biagini and
Frittelli, 2008] in continuous time.
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Continuous-time models

Stochastic opimizatin | @ Continuous time models of financial mathematics are often
uality . . .
Closedness criteria expressed in terms of the stochastic integral (wealth

' |
ACASEES process) of the portfolio process wrt the price process.

e However, the definition of (x,u) — Ef(x,u) relies on
scenariowise description of f(x,u).

e Our approach is first to consider strategies of bounded
variation and then take the Isc hull of the the objective E f

o For BV strategies, stochastic integrals are given pathwise
and the dual can often be written down explicitly.

o Taking the Isc hull of E'f gives rise to stochastic
integrals and it does not affect the dual problem.

o Does require conjugation of integral functionals on
spaces of stochastic processes.
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