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Output of costly simulation: random variable Y
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Surrogate models: learning from low-fidelity simulations

Output of costly simulation: random variable Y

Output of inexpensive simulation: random variable X

Find f such that Y ≈ f (X ), or Y “safely” ≤ f (X )

Case study: Drag-lift ratio estimation*:

Costly: Navier-Stokes solve (4 hours on 8 cores)
Inexpensive: potential flow solve (5 sec on 1 core)

*with S. Brizzolara, Mech. Engineering, MIT



Decision problem: how to invest

Future loss Y
Preferences regarding losses (utility-like functions)
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Decision problem: how to invest

Future loss Y
Preferences regarding losses (utility-like functions)

Utility of y 

y 

Opportunities:

Invest in fixed-income asset now
Invest in shares with uncertain value at the future point in time

Balance upfront cost against future (reduced) loss
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◮ Background: regret, risk, error, deviation

◮ Measures of residual risk: definition and properties

◮ Application to surrogate models
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Regret

Probability space (Ω,F ,P);
L2 = {Y : Ω → IR | Y measurable, E [Y 2] < ∞}

Measure of regret V : L2 → (−∞,∞]

For random variable Y ∈ L2,

V(Y ) = quantification of displeasure with outcomes of Y

For example, compensation required for being exposed to Y

Orientation towards minimization:
For example V(Y ) = −E [u(−Y )] for utility function u



Regularity

V is regular if: convex

closed

V(0) = 0

V(Y ) > E [Y ] when Y not identical to 0
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Risk
Measure of risk R : L2 → (−∞,∞]

For random variable Y ∈ L2,

R(Y ) = quantification of the “risk” in Y

Y safely ≤Y ′ ⇐⇒ Y ≤R Y ′ ⇐⇒ R(Y ) ≤ R(Y ′)

R is regular if: convex

closed

R(Y ) = c when Y is identical to constant c

R(Y ) > E [Y ] when Y is not constant



Examples of risk measures

Probability density of Y 
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Examples of risk measures
Probability density of Y 

R(Y) = E[Y] + (Y) 

R(Y) = sup Y 

E[Y] y 

R(Y) = -superquantile 

= average of (1 )% worst

 



Risk-regret connection

Theorem:
Any regular measure of regret V constructs a regular measure of
risk

R(Y ) = min
c0∈IR

{

c0 + V(Y − c0)
}

.
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For random variable Y ∈ L2,
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For example: E(Y ) = E [Y 2]
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Error

Measure of error E : L2 → [0,∞]

For random variable Y ∈ L2,

E(Y ) = quantification of nonzeroness of Y

For example: E(Y ) = E [Y 2]

E(Y ) = E [αmax{0,Y }/(1 − α) + max{0,−Y }]

E is regular if: convex

closed

E(0) = 0

E(Y ) > 0 when Y is not identical 0
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Deviation

Measure of deviation D : L2 → [0,∞]

For random variable Y ∈ L2,

D(Y ) = quantification nonconstancy of Y

For example standard deviation

D is regular if: convex

closed

D(Y ) = 0 when Y is a constant

D(Y ) > 0 when Y is nonconstant



Deviation-error connection

Theorem:
Any regular measure of error E constructs a regular measure of
deviation

D(Y ) = min
c0∈IR

E(Y − c0)
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risk 



Connections

error 

deviation 

regret 

risk 

Corresponding measures and statistics



Measures of residual risk: definition and properties
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Motivation: How to invest

◮ future loss Y , given in present money

◮ preference captured by measure of regret V

◮ invest c0 in a risk-free asset now

◮ invest c shares in a stock with random value X , in present
terms, at the future point in time

◮ price of each share E [X ]

◮ future regret, as perceived now: V(Y − [c0 + cX ])

◮ balance current cost with future regret:

residual risk = min
c0,c

{

c0 + cE [X ] + V(Y − [c0 + cX ])
}

With optimal c0 and c :
(c0 + cE [X ]) + (Y − [c0 + cX ]) ≤R residual risk



Motivation: wind prediction on day D
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X = 3− (forecast wind power) = legacy forecast
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Preference-based predication

◮ Y = shortfall on day D; to be predicted

◮ X = (D − 1) legacy forecast; known or known distribution

◮ form of shortfall prediction c0 + cX

◮ form of point prediction c0 + cE [X ]

◮ regret about prediction V(Y − [c0 + cX ])

◮ want small shortfall and regret

◮ balance the two by solving

min
c0,c

{

c0 + cE [X ] + V(Y − [c0 + cX ])
}

◮ Same problem as faced by investor!



Measures of residual risk

For given random vector X ∈ L2
n and regular measure of regret V,

a measure of residual risk R(·|X ) : L2 → [−∞,∞] is defined by
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Measures of residual risk

For given random vector X ∈ L2
n and regular measure of regret V,

a measure of residual risk R(·|X ) : L2 → [−∞,∞] is defined by

R(Y |X ) =

inf
c0∈IR,c∈IRn

{

c0 + 〈c ,E [X ]〉 + V(Y − [c0 + 〈c ,X 〉])
}

Interpretation: lowest K ∈ IR such that

Y − [c0 + 〈c ,X 〉] + [c0 + 〈c ,E [X ]〉] ≤R K
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Properties

Theorem:
Given X ∈ L2

n and corresponding regular measures:

(i) E [Y ] ≤ R(Y |X ) ≤ R(Y ) ≤ V(Y ).

(ii) R(·|X ) is convex.

(iii) If X is nondegenerate*, then R(·|X ) is closed and infimum
attained.

*X is nondegenerate if 〈c ,X 〉 is a constant implies c = 0



Dual expression

Theorem:
For finite regular risk measure with conjugate R∗ and risk envelope
Q = {Q ∈ L2 | R∗(Q) < ∞}:

R(Y |X ) = sup
Q∈Q

{

E [QY ]−R∗(Q)
∣

∣

∣
E [QX ] = E [X ]

}



Dual expression

Theorem:
For finite regular risk measure with conjugate R∗ and risk envelope
Q = {Q ∈ L2 | R∗(Q) < ∞}:

R(Y |X ) = sup
Q∈Q

{

E [QY ]−R∗(Q)
∣

∣

∣
E [QX ] = E [X ]

}

Applications in optimization under stochastic ambiguity



Alternative perspective: linear regression

Find regression coefficients c0 and c that

minimize E(Y − [c0 + 〈c ,X 〉])

What will we obtain for “nonstandard” error measures?



Connection regression and residual risk
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Connection regression and residual risk

Regression Problem:

min
c0,c

E(Y − [c0 + 〈c ,X 〉])

Residual Risk Problem:

min
c0,c

{

c0 + 〈c ,E [X ]〉 + V(Y − [c0 + 〈c ,X 〉])
}

Theorem:
Given X ∈ L2

n and corresponding regular measures:

(i) Optimal solution sets are identical.

(ii) They are closed, convex, and if X is nondegenerate, then also
nonempty.

(iii) They are bounded if the residual risk is finite and X is
nondegenerate.
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Learn from low-fidelity simulation: drag/lift estimation

Y drag-to-lift ratio; costly realization (4 hours on 8 cores)
X approx. ratio; inexpensive realizations (5 sec on 1 core)

Find c0 + cX such that Y safely ≤ c0 + cX

R(Y ) ≤ R(c0 + cX ), with 0.8-superquantile risk



Distribution of drag/lift

Randomness due to manufacturing tolerance (689 “scenarios”)
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Mean E [Y ] = 0.0864; 0.8-superquantile R(Y ) = 0.0901
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Randomness due to manufacturing tolerance (689 “scenarios”)
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Mean E [Y ] = 0.0864; 0.8-superquantile R(Y ) = 0.0901

Want to bound R(Y ) from above cheaply



Risk-tuned surrogate estimation

Theorem:
For positively homogeneous regular measure of risk R,

the model c0 + 〈c ,X 〉 of Y ,

with c obtained by corresponding regression and
c0 = R(Y − 〈c ,X 〉), satisfies

R(Y ) ≤ R(c0 + 〈c ,X 〉)
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Quantile regression/residual risk problem −→ c = 0.7859



50 training data points
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Quantile regression/residual risk problem −→ c = 0.7859
Following theorem −→ c0 = 0.0245



Illustration of fit
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Illustration of fit
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training data
quantile reg
risk−tuned

R(c0 + cX ) = 0.0918 (mean 0.0912, st.dev. 0.0016)

Recall: R(Y ) = 0.0901



Summary

Connecting estimation and decision making (risk-tuning)

Enabling construction of risk-averse, preference-driven data tools

Applications in “risk-averse” regression and robust optimization
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