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Outline of the talk

@ Regularity properties of the Hamiltonian: why are these useful?

@ The Hamiltonian is constant (when data does not depend on
time)

@ The Hamiltonian is Lipschitz when the data is Lipschitz in time

@ These are two examples of a principle: the Hamitonial inherits
the regularity of the data w.r.t. time

@ A new example: The Hamiltonian has bounded variation if the
data has bounded variation w.r.t. time

@ Applications and open questions.
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The Optimal Control Problem

Minimize g(x(S),x(T))
over x(.) € WH([S, T],R")) s.t.
(P) ¢ x(t) € F(t, x(t))a.e.,
h(t,x(t)) <0, forallte[S,T]
(x(S),x(T)) € C,
(9:R"xR" =R, CCR"xR"(closed) and
F(,.)):[S,T]xR"~R".)

Note:
@ ‘Differential inclusion’ formulation
@ State constraint ‘h(x(t)) < 0’

Take a minimizer X(.).
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Hypotheses

(H1): F(.,.) is closed valued, F(., x) is L - measurable for each
xeR”

(H2): There exist ¢ > 0 and k > 0 and ¢ > 0 such that
F(t,x) C F(t,x)+ k(]Jx —x'|)B and F(t,x) € cB.
for all x,x’ € x(t) 4+ 6B, v € F(t, x), ae. t € [S, T].
(H3): h(.) is continuously differentiable.

Define Hamiltonian H(.,.,.) : [S, T] x R" x R" - R

H(t,x,p) == sup p-v
veF(t,x)
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The Hamiltonian Inclusion

Theorem (Measurable Time Dependence). Take a minimizer
x(.). Assume (H1)-(H3).

Then there exist p(.) € W', u(.) € NBV*(S, T)and A > 0
such that

(i): supp{u} C {t|h(x(t)) = 0}

(i) (p(:), A () # (0,0,0),

(iii) (—p(t), X(1)) € codx pH(t, X(t), q(1)) a.

(iv) (9(S).—q(T)) € Adg(X(S), X( ))+Nc( (3) X(T)),

{p(S) ift=35

where q(t) = B+ fis.q V(X(8))u(ds) ifte (S, T]

(Gives Pontryagin Max. Principle when F(t, x) = f(t, x, U).)
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Regular Time Dependence: Nec. Conditions

@ F(t x)isindep. oft = H(t, X(t), g(t)) = const. on open
interval (S, T)

@ F(.,x)is Lipschitz = t — H(t, x(t), g(t)) is Lipschitz on
open interval (S, T)

Not obvious because
HtLX(1),q(t) = sup (p(t) + fig g VA(X(1))u(ds)) - v

veF(tx)

and p(.) may have jumps!

Also:
‘F(t, x) is convex for each (t, x)’
— above relations are true on closed interval [S, T|

(Refinement due to Aseev and Arutyunov, ‘94)
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Idea of Proof

By considering transformation of the independent variable
o(s) = / (1+ w(s))ds, w(s) € [ —e.1 +¢
[S.1

show that (x(s), z(s) = s) is minimizer for problem with dynamics:

(x(s),z(s)) e {((1 +w)v,(1 +w))|v e F(z(s),x(5)), —e <w < e}

@ Richer class of variations (perturb state trajectories also by
‘scaling’ time variable) yield extra information:

H(t,X(t,q(1)) = r(s) forte (S, T) (1)
for some Lipschitz continuous function r(.) satisfying
r e O H(t x(t, q(t))

@ additional analysis to extend to (1) to all [S, T].

@ F(t, x) must be Lipschitz continuous in both variables, because
time is now a state variable.
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Regularity of the Hamiltonian: Open Questions

Recall
@ F(t x)isindependentoft —  H(t, x(t),q(t))=c
@ F(.,x)isLipschitz = t— H(t, X(t),q(t)) is Lipschitz

Interpretation:

‘The Hamiltonian inherits the time-regularity properties of the
dynamics’

Does the Hamiltonian inherit other forms of continuity?

. . ] ? ) . H H H L)
't — F(.,x) is continuous’ = ’Hamiltonian is continous?

We answer related questions . .

Vinter Regularity Properties of the Hamiltonian in Optimal Control



Why is Regularity Useful?

@ Lagrangian mechanics constancy of Hamiltonian gives
invariants of motion.

x(.) moves in a conservative force field (F(x) = V¢(x)).
Motion x(.) renders stationary ‘the action’:

[ (otxto) - 52w e

Hamiltonian is ¢(X(t)) + $X3(t) (conservation of energy)
@ Optimality conditions on singular arcs
@ Conditions for regularity of optimal controls
@ Existence of non-degenerate multipliers
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Functions of Bounded Variation

Classical concept:

r(.) : [S, T] — R has bounded variation means

n(T) < +oo
in which
N—1
n(t) := sup r(teq — r(t
(1) T(t){§| (figr — r(t) [}
(Sup taken over all partitions 7(t) ({fp = S, ..., ty = t}) of
[S.1].)

n(t) is called the cummulative variation function

@ 7)(.) is monotone increasing
@ 7(.) has a countable number of continuity points
@ 7(.) has everywhere left and right limits
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Generalization to Multifunctions

Take a multifunction F : [S, T] x R" ~ R" and an F- trajectory
X(.).
Several ways to define ‘t — F(t,.)’ has bounded variation

Definition. { — F(¢,.) has bounded variation along X(.) if
n(T) < 400, where

N—1
n(t) == Sgp{ > sup {d(F(tiv1, x), F(t, X)) | x € G} } :
i=0

Take supremum over partitions 7 = {f{p = S, ..., ty =t} of
[S, 1]

G:={x()|te[S T}

7n(.) is called the cummulative variation of t — F(t,.)

Vinter Regularity Properties of the Hamiltonian in Optimal Control



Precedents: Moreau’s Sweeping Processes

Take a closed, convex multifunction C(.) : [S, T] — R".
Sweeping processes are state trajectories for

{ —X(t) € Ner(x(1))

Xo = Xo
(Moreau, 1973)

Hypotheses: sgp{ Z,’i‘& SUPyec(s. ) Aoty (V) } <00 .

(Supremum over partitions 7 = {tp = S, ..., Iy =t} of [S, T].)

(Early example of use of BV multifunctions)
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Take a multifunction F(.,.); of bounded variation along X(.).

Write n(.) = cummulative variation function. Then
du(F(t,x"), F(s,x")) < n(t) —n(s)

forall [s,t] C [S, T] and x’ € x([S, T]).

Multifunctions of bounded variation have many ‘classical’
properties:

(a): Take any s €[S, T) and t € (S, T]. The one-sided limits
F(st,x) := limF(s',x) and F(t7,x) := limF(t, x)
s'|s t'1t
exist for every x € G.
(b): There exists a countable set A such that,
lim dy(F(t', x),F(t,x)) = 0.
t—t

foreveryte (S, T)\Aand x € G
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Examples of Multifunctions having Bounded

Variation

Class of multifunctions t — F(.,.) with bdd. var. (along some
X(.)) is much larger than the class of Lip. multifunctions
t— F(t,.).
Examples of Mutifunctions having bounded variation include:
@ F(.,.)’s with a finite number of fractional singularities, e.g.
F(t,x) =N, |t—t]zF(x) (F(.) ‘smooth’)
@ F(.,.)’s with a finite number of interior discontinuities
@ F(.,.)’s with end-time discontinuities

BUT some Hdélder t — F(t,.)’s do not have bounded variation.
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Example (BV Data)
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(Controlled differential equation, in which the control satisfies
lu(t)| < K, and which can be reformulated as a differential
inclusion with BV time dependence.)

~

Force u(t) [
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Example: Optimize bending rigidity in cantelever

@ For uniform downward force on leading edge, choose distribution
of two materials to maximize bending rigidity R:

R = force/displacement

@ Solve variational problem, in which horizontal displacement x is
time-like variable.
@ For rounded leading edge, Lagrangian is non-autonomous with a
fractional singularity of at ‘time’ x.
(L(x,y,u) ~ [x]*0<a<1.)
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Hamiltonians of Bounded Variation

Theorem (Palladino + V, 2014). Take a minimizer X(.).
Assume
@ F(.,.)is convex valued
@ t — F(t,.) has bounded variation along X(.) with
cummulative variation 7(.).

Then the multipliers (p(.), u(.), A) can be chosen
to satisfy the following additional condition:

® |H(t, x(t),q(t)) — H(s,X(s),q(s))| < K x (n(t) —n(s))
for all intervals [s, t] C [S, T].

i.e. ‘Hamiltonian has inherits BV property from data, and has
some cummulative variation (modulo scaling)’.

M Palladino and R B Vinter, ‘Regularity of the Hamiltonian along
Optimal Trajectories’, SIAM J. Control and Opt., to appear.

R. B. Vinter, ‘Multifunctions of Bounded Variation’, submitted
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Idea of Proof

Approximate (P) by Autonomous Multistage Problem on the partition:
{to = S,...,tNZ T}I

Minimize g(x(T))
over x(.) : [S, T] = R" s.t.

pry ) X(8) € ST F(t x(1)Xq0.1.0)(1) ace.
() and

h(x(t)) < 0, foralltel[S,T]
x(S)=x, x(T)e C.

Strengthened nec. conditions for multiprocess problem give:

|H(ti, X(ti+1), q(tiv1)) — H(, x(6), ()] ~ 0

|H(ti 1, X(ti1), q(tie)) — H(t, X(8), q(t)) < K(n(t) —n(t)) - - -

(desired link between Hamiltonian and cummulative var. fn.!)
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1st Application

Calculus of Variations:

Minimize [4 L(t, x(t), X(t))lt
(Q) < over x(.) € WH([0,1]; R")
x(S) =xo and, x(T) =

(Q) has a minimizer X(.) when:

(HE): (i): L(.,x,v)is £ x B™" measurable and L(t.,.,.) is lower
semicontinuous for each t € [S, T].

(ii): L(t, x,.) is convex for each (t,x) € R” x R".

(iii): There exists a convex function 6(.) : R™ — R* and a
number « such that IiTm 6(r)/r = 400, and
rftoo

L(t,x,v) > 6(|v|]) — alx| for all (t,x,v) € [S, T] x R" x R".
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Ball Mizel Example - Non Lipschitz Minimizer

over x € W'([0,1]; R) satlsfymg
x(0)=0, x(1)=k.
Here, r > 0 and k > 0 are constants, linked by the relationship
r = (2k/3)"2(1 — k*)(13k® - 7).
Je>0s.t,Vke(1—¢1), thearcx(t) := kt?/%is unique minimizer.

{M|n|m|ze Jo APt + (3(t) — 22x14(t)} ot

X

\ X0

2/3 fractional singularity

Figure : Non-Lipschitz Minimizer.
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Application 1, Continued

(HE) does not guarantee that x(.) is Lipschitz. But:

Corollary. Let x(.) be a minimizer. Assume that

@ (HE)

@ t — epil(t,.,.) has bounded variation along (x(.), X(.))
Then X(.) is Lipschitz continuous.

Extends earlier theory:

Replace ‘F(., x) is Lipschitz’ by ‘F(., x) has bounded variation’

Proof Technique: Use Tonelli Regularity Theory +
strengthened conditions . .
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Application 2. Non-degeneracy of Necessary

Conditions

If the data is BV then we know

® [H(t,x(t),q(t)) — H(t, X(1), q(1))| < K x (n(t) —n(s))
for all intervals [s, t] C [S, T] (not just (S, T)).
This is an extension to BV time dependence of Arutyunov’s
strengthened necessary conditions.

@ The strengthened condition can be used to guarantee
existence of non-degenerate Lagrange multiplier in some
new situations.

Extends earlier theory:

Replace ‘F(., x) is Lipschitz’ by ‘F(., x) has bounded variation’
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Linear L*° Distance Estimates

{ x(t) € F(t, x(t))
x(t) e A

(F(.,.):[S, T] x R"~ R"and closed set A C R")

A Linear Distance Estimate is valid if there exists K > 0 with
the property:

For any F-trajectory X(.) with x(S) € A, then there is a feasible
x(.) with x(0) = X(.) and

[IX() = Xl < ng{lgf;] da(X(1)).

Distance estimates have many uses.
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Linear L>° Estimates for BV Data

Theorem (Bettiol, Frankowska, Vinter, JDE 2012).
Assume

(i): Standard Lipschitz/boundedness conditions
(ii): ‘inward pointing condition’:

( lim inf coF(t’,x’))ﬂintTA(x) £ 0.

(' %) B (t,x)
(iii): t — F(t, x) is absolutely continuous from the left

Then an L*° Linear Estimate is valid.

(iii) can be replaced by ‘F(.,x) has bounded variation’.
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Concluding Remarks

This talk illustrates:
‘The Hamiltonian inherits the regularity of t — F(,.)’

We have seen useful instances of this principle.

t — F(t,.) is constant = Hamiltonian is constant

t — F(t,.) is Lipschitz = Hamiltonian is Lipschitz

t — F(t,.) has bdd. var. = Hamiltonian has bbd. var.
(new)

Open Question

t — F(t,.) is continuous = Hamiltonian is continuous
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