A class of total variation minimization problems

Martial Agueh University of Victoria, Canada

Joint work with Guillaume Carlier (Ceremade, Paris Dauphine)

> Limoges May 18, 2015

→ Ξ →

WCOM Fall 2013 in Victoria, Canada

Martial Agueh University of Victoria, Canada A class of total variation minimization problems

The problem

• Given two increasing functions F and G on $[0, \infty)$ such that F(0) = G(0) = 0 and $\lim_{t\to\infty} G(t) = \infty$, what are the infimum value m_{\pm} and the minimizers u of the variational problem

$$(\mathcal{P}) \quad m_{\pm} := \inf \left\{ \int_{\mathrm{I\!R}^n} \mathsf{d} |\nabla u| \pm \int_{\mathrm{I\!R}^n} \mathsf{F}(|u|) : \int_{\mathrm{I\!R}^n} \mathsf{G}(|u|) = 1 \right\}$$

• $n \ge 2$ is a given integer, and

$$\int_{\mathrm{I\!R}^n} \mathsf{d} |\nabla u| = \|\nabla u\|_{\mathcal{M}(\mathrm{I\!R}^n)}$$

denotes the total variation of a function $u: {\rm I\!R}^n \to {\rm I\!R}$, that is,

$$\|
abla u\|_{\mathcal{M}(\mathrm{I\!R}^n)} := \sup\left\{\int_{\mathrm{I\!R}^n} u\operatorname{div}\phi: \ \phi\in C^1_c(\mathrm{I\!R}^n;\mathrm{I\!R}), \ |\phi(x)|\leq 1
ight\}$$

► The mininization in problem (\mathcal{P}) is performed over functions $u : \mathbb{R}^n \to \mathbb{R}$ having finite total variation $\|\nabla u\|_{\mathcal{M}(\mathbb{R}^n)} < \infty$, and satisfying the constraint $\int_{\mathbb{R}^n} G(|u|) = 1$. $\square \to \square = \square = \square \square$ Martial Aguen University of Victoria, Canada A class of total variation minimization problems

Motivation

Problem (\mathcal{P}) is motivated by the sharp L^1 Gagliardo-Nirenberg inequalities, which can be obtained from the L^1 -Sobolev inequality and an interpolation inequality.

▶ Sharp L^1 Sobolev inequality. Denote $1^* = \frac{n}{n-1}$, then

$$\|u\|_{L^{1^*}(\mathbb{R}^n)} \le (n\gamma_n^{1/n})^{-1} \|\nabla u\|_{\mathcal{M}(\mathbb{R}^n)} \quad \forall u \in \mathrm{BV}(\mathbb{R}^n) \quad (1)$$

where γ_n is the Lebesgue measure of the unit ball in \mathbb{R}^n .

- The best constant in the L¹ Sobolev inequality is (nγ_n^{1/n})⁻¹, and optimal functions are characteristic functions of balls [Federer-Fleming, '60]; (proved also by optimal transport).
- Interpolation inequality. For s, q s.t. $1 \le q < s < 1^*$,

$$\|u\|_{L^{s}(\mathbb{R}^{n})} \leq \|u\|_{L^{q}(\mathbb{R}^{n})}^{1-\theta} \|u\|_{L^{1^{*}}(\mathbb{R}^{n})}^{\theta},$$
(2)

where ¹/_s = (1-θ)/q + θ/1* i.e. θ = n(s-q)/s(n-q(n-1)).
 Characteristic functions of balls are also optimal functions in the interpolation inequality (2).

▶ Sharp L^1 Gagliardo-Nirenberg inequalities. Combining the L^1 -Sobolev and the interpolation inequalities, we obtain the L^1 Gagliardo-Nirenberg inequality: for $1 \le q < s < 1^*$,

$$\begin{aligned} \|u\|_{L^{s}(\mathbb{R}^{n})} &\leq \left(n\gamma_{n}^{1/n}\right)^{-\theta} \|\nabla u\|_{\mathcal{M}(\mathbb{R}^{n})}^{\theta} \|u\|_{L^{q}(\mathbb{R}^{n})}^{1-\theta} \quad \forall u \in D^{1,q}(\mathbb{R}^{n}) \\ (3) \end{aligned}$$
where $D^{1,q}(\mathbb{R}^{n}) := \{u \in L^{q}(\mathbb{R}^{n}) : \|\nabla u\|_{\mathcal{M}(\mathbb{R}^{n})} < \infty\}.$

• Characteristic functions of balls are optimal functions in (3) as they are optimal in both L^1 Sobolev and interpolation inequalities. Then the L^1 -Gagliardo-Nirenberg inequality (3) is sharp with the best constant being $\left(n\gamma_n^{1/n}\right)^{-\theta}$.

(4 回) (4 回) (4 回)

Link between (\mathcal{P}) and L^1 Gagliardo-Nirenberg inequalities

By a scaling argument, the sharp L^1 Gagliardo-Nirenberg inequality (3) is related to problem (\mathcal{P}) when $F(t) = \frac{t^q}{a}$ and $G(t) = t^s$.

Proposition (A, 2008)

Let q and s be such that $1 \leq q < s < 1^*.$ If the (\mathcal{P}) -type problem

$$m_{+} := \inf \left\{ E(u) := \int_{{\rm I\!R}^n} d|
abla u| + rac{1}{q} \int_{{\rm I\!R}^n} |u|^q : \ \|u\|_{L^s} = 1
ight\}$$

admits a minimizer u_{∞} , then the L^1 Gagliardo-Nirenberg inequality (3) holds, and the best constant K_{opt} and optimal functions are explicitly given in terms of the minimizer u_{∞} as:

$$\begin{split} & \mathcal{K}_{opt} = [\mathcal{K}(n,q,s)/m_+]^{\frac{n+s-nq}{s(n-q(n-1))}}, \text{ where } \quad m_+ = \mathcal{E}(u_\infty), \\ & \mathcal{K}(n,q,s) = \frac{\alpha+\beta}{(q\alpha)^{\frac{\alpha}{\alpha+\beta}}\beta^{\frac{\beta}{\alpha+\beta}}}, \quad \alpha = n-s(n-1), \ \beta = n(s-q), \text{ and} \\ & u_{\sigma,x_0}(x) = \mathcal{C}u_\infty\left(\sigma(x-x_0)\right), \ \mathcal{C}, \sigma \in \mathbb{R} \text{ and } x_0 \in \mathbb{R}^n \text{ are arbitrary.} \end{split}$$

Proof of the proposition

• u_{∞} is a minimizer implies:

$$E(u_{\infty}) \leq E\left(\frac{u}{\|u\|_{s}}\right) = \frac{\|\nabla u\|_{\mathcal{M}}}{\|u\|_{s}} + \frac{\|u\|_{q}^{q}}{q\|u\|_{s}^{q}} \quad \forall u \in D^{1,q}(\mathbb{R}^{n})$$

with equality if $u = u_{\infty}$.

• Scaling:
$$u_{\lambda}(x) = u\left(\frac{x}{\lambda}\right), \ \lambda > 0$$
:

$$E(u_{\infty}) \leq \lambda^{n-1-\frac{n}{s}} \frac{\|\nabla u\|_{\mathcal{M}}}{\|u\|_{s}} + \lambda^{n(1-\frac{q}{s})} \frac{\|u\|_{q}^{q}}{\|u\|_{s}^{q}} := f(\lambda)$$

Optimization in λ:

$$E(u_{\infty}) \leq \min_{\lambda>0} f(\lambda) = f(\lambda_{\min})$$

gives the sharp L^1 Gagliardo-Nirenberg inequality, with u_{∞} as an optimal function.

Goals

- Generalize the results on the particular problem (𝒫) of the proposition (i.e., extremality of characteristic functions of balls for (𝒫) when F(t) = t^q/q and G(t) = t^s, 1 ≤ q < s < 1^{*}) to more general functions F and G.
- Derive other geometric inequalities involving the total variation with their best constants and optimal functions, by choosing different examples of functions F and G.
 Example. The sharp L¹ logarithmic Sobolev inequality is obtained by choosing F(t) = t ln t and G(t)) = t,

$$\int_{\mathrm{I\!R}^n} |u| \ln \left(\frac{e^n \gamma_n |u|}{\|u\|_{L^1(\mathrm{I\!R}^n)}} \right) \leq \int_{\mathrm{I\!R}^n} d |\nabla u|, \quad \forall u \in \mathrm{BV}(\mathrm{I\!R}^n).$$

Prove existence and nonexistence results for some PDEs involving the 1-Laplacian operator Δ₁u := div (∇u/|∇u|); see [Demengel, '02], [Bellettini, Caselles, Novaga, '02], [Andreu, Caselles, Díaz, Mażon, '02].

Theorem

Assume that F, $G : [0, \infty) \to [0, \infty)$ are continuous and increasing functions of class C^1 on $(0, \infty)$ s.t. F(0) = G(0) = 0 and $\lim_{t\to\infty} G(t) = \infty$.

Then the infimum value m_±,

$$m_{\pm} := \inf \left\{ E_{\pm}(u) = \int_{\mathrm{I\!R}^n} d|\nabla u| \pm \int_{\mathrm{I\!R}^n} F(|u|) : \int_{\mathrm{I\!R}^n} G(|u|) = 1 \right\}$$

of problem (\mathcal{P}) is given by the 1-dimensional variational problem

$$m_{\pm} = \inf_{\alpha > 0} H_{\pm}(\alpha)$$

where

$$H_{\pm}(\alpha) := n \gamma_n^{1/n} \frac{\alpha}{G(\alpha)^{(n-1)/n}} \pm \frac{F(\alpha)}{G(\alpha)}.$$

向下 イヨト イヨト

The main result

Theorem (Continuation)

If the infimum m_± of H_±(α) is attained, that is, if the set V_± of the minimizers of H_±(α), α > 0, is non-empty,

$$V_{\pm} := \{ \alpha > 0, \ H_{\pm}(\alpha) = m_{\pm} \} \neq \emptyset,$$

then (\mathcal{P}) has minimizers, which are characteristic functions of balls; more precisely the minimizers of (\mathcal{P}) are of the form

$$\pm u_{\alpha}(x_0+.)$$
 with $x_0 \in \mathbb{R}^n$, $\alpha \in V_{\pm}$,

where

$$u_{lpha} := lpha \chi_{\mathcal{B}_{
ho_{lpha}}}$$
 and $ho_{lpha} := rac{1}{\gamma_n^{1/n} \mathcal{G}(lpha)^{1/n}}.$

On the contrary, if the infimum m_± of H_±(α) is not attained in (0,∞), then (𝒫) has no minimizers.

Proof of the main theorem - Claim 1

Claim 1. Symmetrization. By symmetrization and a convenient change of variable u → v, we can rewrite problem (P) as the minimization of a strictly concave functional J_±(v) over a convex set K.

More precisely, (\mathcal{P}) is equivalent to

$$(\mathcal{P})_{\mathbf{v}}: \quad m_{\pm} = \inf\{J_{\pm}(v): v \in K\}$$

where

$$J_{\pm(v)} := n\gamma_n \int_0^\infty v^{(n-1)/n}(t) dt \pm \gamma_n \int_0^\infty F'(t)v(t) dt$$

is a strictly concave functional, and K is the set of nonincreasing real-valued functions $v : (0, \infty) \rightarrow (0, \infty)$ satisfying the linear constraint

$$\int_0^\infty G'(t)v(t)dt=\frac{1}{\gamma_n}$$

Proof of claim 1

- Symmetrization. Replacing u by its radially-symmetric decreasing rearrangement u^{*} will decrease the energy, E_±(u^{*}) ≤ E_±(u), but conserve the constraint, ∫_{IRⁿ} G(|u|) = ∫_{IRⁿ} G(|u^{*}|); this follows from Pòlya-Szegö inequality and equimeasurability of rearrangement. Then the minimization in (P) can be performed over the u^{*}.
- For such a u^{*}, the level set {u^{*} > t} is a ball centered at the origin; call β(t) > 0 its radius. Then by the co-area formula [Fleming-Rishel, '60] and the layer cake representation (Cavalieri formula), we can rewrite E_±(u^{*}) in terms of βⁿ(t).
- It is more convenient to use the change of variable v = βⁿ, and write E_±(u^{*}) in terms of v, so that E_±(u^{*}) = J_±(v).
- With this change of variable, the constraint in (\mathcal{P}) becomes

$$1 = \int_{\mathrm{IR}^n} G(|u^*|) = \gamma_n \int_0^\infty G'(t) v(t) dt.$$

Proof of the main theorem - Claim 2

Claim 2. Reduction to a 1-d problem. The minimizer of (P)_ν - if it exists - is attained at a function of the form v_α := ^{χ_[0,α]/_{γ_nG(α)} for some α > 0 (i.e. an extreme point of K). Moreover, J_±(v_α) = H_±(α), and (P)_ν reduces to the 1-d problem}

$$m_{\pm} = \inf_{\alpha > 0} J_{\pm}(v_{\alpha}) = \inf_{\alpha > 0} H_{\pm}(\alpha)$$

Proof:

- $v_{\alpha} \in K$ implies $m_{\pm} \leq \inf_{\alpha>0} J_{\pm}(v_{\alpha}) = \inf_{\alpha>0} H_{\pm}(\alpha)$.
- ▶ Conversely, any $v \in K$ can be represented in terms of the v_{α} as

$$\mathbf{v}(t) = \int_0^\infty \mathbf{v}_lpha(t) d\mu_\mathbf{v}(lpha)$$
 where $d\mu_\mathbf{v}(lpha) := -\gamma_n \mathcal{G}(lpha) \mathbf{v}'(lpha)$

is a probability measure on (0, ∞); so that by Jensen's inequality, we have for all $v \in K$

$$J_{\pm}(v) \geq \int_{0}^{\infty} J_{\pm}(v_{\alpha}) d\mu_{v}(\alpha) = \int_{0}^{\infty} H_{\pm}(\alpha) d\mu_{v}(\alpha) \geq \inf_{\alpha > 0} H_{\pm}(\alpha).$$

Proof of the main theorem - Claim 3

- ► Claim 3. Characterization of the minimizers. The minimizers of (\mathcal{P}) if they exist are of the form $\pm u_{\alpha}(x_0 + .)$ where α is a minimizer of H_{\pm} , i.e. $H_{\pm}(\alpha) = m_{\pm}$, and $u_{\alpha} = \alpha \chi_{B_{\rho\alpha}}$ with $\rho_{\alpha} = \frac{1}{\gamma_n^{1/n} G(\alpha)^{1/n}}$
- Proof
 - **Existence.** If $\alpha > 0$ is a minimizer of H_{\pm} , i.e. $H_{\pm}(\alpha) = m_{\pm}$, then the corresponding $u_{\alpha}(x)$ is admissible in (\mathcal{P}) and satisfies $m_{\pm} = H_{\pm}(\alpha) = J_{\pm}(v_{\alpha}) = E_{\pm}(u_{\alpha})$; so u_{α} is a minimizer of (\mathcal{P}) .

And since $E_{\pm}(u)$ is invariant under translation and sign change, $u \mapsto -u(x_0+)$, then the functions $\pm u_{\alpha}(x_0+.)$ are minimizers.

- Unique characterization. If \bar{u} is another minimizer of (\mathcal{P}) , then there exists a minimizer α of H_{\pm} s.t \bar{u} differs from $\pm u_{\alpha}$ by a translation; this follows from rearrangement argument, strict concavity of J_{\pm} , and optimality in isoperimetric inequality.
- ▶ Non-existence. If $\inf_{\alpha>0} H_{\pm}(\alpha)$ is not attained in $(0, \infty)$, $\exists u_{\alpha_n} \text{ s.t. } \alpha_n \to 0 \text{ or } \alpha_n \to \infty$; then (\mathcal{P}) has no minimizers.

Extension and Application to sharp inequalities

• **Extensions.** The main result extends naturally to continuous functions F which are difference of two increasing functions F_1 and F_2 such that $F_1(0) = F_2(0) = 0$. Indeed, we can show that $E_{\pm}(u^*) = J_{\pm}(v)$ by decomposing $E_{\pm}(u^*)$ into terms of F_1 and F_2 and combine them back later; **e.g.** $F(t) = t \ln t$.

Proposition (sharp inequalities)

Assume F and G are such that $H_{\pm}(\alpha)$ has a minimizer α_{∞} , $H_{\pm}(\alpha_{\infty}) = m_{\pm}$, and consider the corresponding minimizer $u_{\alpha_{\infty}}$ of (\mathcal{P}) . Then the sharp inequality

$$\int_{{\rm I\!R}^n} d|\nabla u| \pm \int_{{\rm I\!R}^n} F(|u|) \le m_{\pm}$$

holds for all functions u with finite total variation satisfying the constraint $\int_{\mathbb{R}^n} G(|u|) = 1$. Moreover, the optimal functions are $u = \pm u_{\alpha_{\infty}}(x_0 + .), x_0 \in \mathbb{R}^n$.

Examples of sharp inequalities

▶ Sharp L^1 logarithmic Sobolev inequality. Choosing $F(t) = t \ln t$ and G(t) = t in the proposition, $H_-(\alpha)$ is attained at $\alpha_{\infty} = 1/\gamma_n$, and $u_{\alpha_{\infty}} = \chi_{B_1}/\gamma_n$. We then have

$$\int_{\mathrm{I\!R}^n} |u| \ln \left(\frac{e^n \gamma_n |u|}{\|u\|_{L^1(\mathrm{I\!R}^n)}} \right) \le \int_{\mathrm{I\!R}^n} d |\nabla u|, \quad \forall u \in \mathrm{BV}(\mathrm{I\!R}^n)$$

and the optimal functions are $\pm u_{lpha_{\infty}}(x_0+.)$

- Sharp L¹ Gagliardo-Nirenberg inequality. Choose
 F(t) = t^q/q and G(t) = t^s, with 1 < q < s < 1^{*} in the proposition. Then H₊(α) has a unique minimizer and we deduce the sharp L¹ Gagiardo-Nirenberg inequality.
- Sharp L¹ Sobolev inequality. Choose F = 0 and G(t) = t^{1*}. Then H(α) = nγ^{1/n} has all α > 0 as minimizers, and we deduce the sharp L¹ Sobolev inequality.

(四) (日) (日)

Proposition

If u is a non-negative minimzer of

$$\inf\left\{\int_{{\rm I\!R}^n} d|\nabla u| + \int_{{\rm I\!R}^n} F(|u|): \ \int_{{\rm I\!R}^n} G(|u|) = 1\right\}$$

then *u* satisfies the 1-Laplacian PDE (i.e. the Euler-Lagrange equation)

$$-\Delta_1 u + F'(u) = \lambda G'(u)$$

where λ is a Lagrange multiplier for the constraint $\int_{\mathbb{R}^n} G(u) = 1$. Examples.

- Choosing F(t) = t^q/q and G(t) = t^s with 1^{*} < s < q or 1 < q < s < 1^{*}, then −Δ₁u = u^{s−1} − u^{q−1} has nontrivial nonnegative solutions in D^{1,q}(ℝⁿ).
- ► Similarly, if $s < q < 1 + \frac{s}{n}$, then $-\Delta_1 u = u^{s-1} + u^{q-1}$ has nontrivial nonnegative solutions in $BV(\mathbb{R}^n)$.

Proposition

In addition to the assumptions on F and G in the main theorem, if F is convex and G is concave, then for any $\lambda \ge 0$, the PDE

$$\begin{cases} -\Delta_1 u = \lambda G'(u) - F'(u) \\ u \ge 0, \ \int_{\mathrm{I\!R}^n} G(u) = 1 \end{cases}$$
(4)

has no solutions.

- Proof.
 - ► The convexity of F and concavity of G imply that u solves the PDE (4) iff it is a minimizer of the variational problem (P).
 - But H₊(α) does not have a minimizer in (0,∞); in fact, m₊ = 0 as lim_{α→0+} H₊(α) = 0 but H₊(α) > 0 ∀α > 0. Therefore, problem (P) has no minimizers, and so the PDE (4) has no solutions.
- ► **Example.** Choosing G(t) = t and $F(t) = t^q/q$, we have: If q > 1, the PDE $-\Delta_1 u = 1 - u^{q-1}$ has no solution in $D^{1,q}$.

Thank you!

Happy Birthday Terry!

Martial Agueh University of Victoria, Canada A class of total variation minimization problems

向下 イヨト イヨト

æ