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The problem

I Given two increasing functions F and G on [0,∞) such that
F (0) = G (0) = 0 and limt→∞ G (t) =∞, what are the
infimum value m± and the minimizers u of the variational
problem

(P) m± := inf

{∫
IRn

d|∇u| ±
∫
IRn

F (|u|) :

∫
IRn

G (|u|) = 1

}
I n ≥ 2 is a given integer, and∫

IRn
d|∇u| = ‖∇u‖M(IRn

)

denotes the total variation of a function u : IRn → IR, that is,

‖∇u‖M(IRn
) := sup

{∫
IRn

u divφ : φ ∈ C 1
c (IRn; IR), |φ(x)| ≤ 1

}
I The mininization in problem (P) is performed over functions

u : IRn → IR having finite total variation ‖∇u‖M(IRn
) <∞,

and satisfying the constraint
∫
IRn G (|u|) = 1.
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Motivation

Problem (P) is motivated by the sharp L1 Gagliardo-Nirenberg
inequalities, which can be obtained from the L1-Sobolev inequality
and an interpolation inequality.

I Sharp L1 Sobolev inequality. Denote 1∗ = n
n−1 , then

‖u‖L1∗ (IRn
) ≤ (nγ

1/n
n )−1‖∇u‖M(IRn

) ∀u ∈ BV(IRn) (1)

where γn is the Lebesgue measure of the unit ball in IRn.
I The best constant in the L1 Sobolev inequality is (nγ

1/n
n )−1,

and optimal functions are characteristic functions of balls
[Federer-Fleming, ‘60]; (proved also by optimal transport).

I Interpolation inequality. For s, q s.t. 1 ≤ q < s < 1∗,

‖u‖Ls(IRn
) ≤ ‖u‖

1−θ
Lq(IRn

)
‖u‖θ

L1∗ (IRn
)
, (2)

where 1
s = (1−θ)

q + θ
1∗ i.e. θ = n(s−q)

s(n−q(n−1)) .
I Characteristic functions of balls are also optimal functions in

the interpolation inequality (2).
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Motivation

I Sharp L1 Gagliardo-Nirenberg inequalities. Combining the
L1-Sobolev and the interpolation inequalities, we obtain the
L1 Gagliardo-Nirenberg inequality: for 1 ≤ q < s < 1∗,

‖u‖Ls(IRn
) ≤

(
nγ

1/n
n

)−θ
‖∇u‖θM(IRn

)
‖u‖1−θ

Lq(IRn
)
∀u ∈ D1,q(IRn)

(3)
where D1,q(IRn) := {u ∈ Lq(IRn) : ‖∇u‖M(IRn

) <∞}.
I Characteristic functions of balls are optimal functions in (3) as

they are optimal in both L1 Sobolev and interpolation
inequalities. Then the L1-Gagliardo-Nirenberg inequality (3) is

sharp with the best constant being
(
nγ

1/n
n

)−θ
.
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Link between (P) and L1 Gagliardo-Nirenberg inequalities

By a scaling argument, the sharp L1 Gagliardo-Nirenberg inequality
(3) is related to problem (P) when F (t) = tq

q and G (t) = ts .

Proposition (A, 2008)

Let q and s be such that 1 ≤ q < s < 1∗. If the (P)-type problem

m+ := inf
{
E (u) :=

∫
IRn

d|∇u|+ 1

q

∫
IRn
|u|q : ‖u‖Ls = 1

}
admits a minimizer u∞, then the L1 Gagliardo-Nirenberg inequality
(3) holds, and the best constant Kopt and optimal functions are
explicitly given in terms of the minimizer u∞ as:

Kopt = [K (n, q, s)/m+]
n+s−nq

s[n−q(n−1)) , where m+ = E (u∞),

K (n, q, s) = α+β

(qα)
α
α+β β

β
α+β

, α = n − s(n − 1), β = n(s − q), and

uσ,x0(x) = Cu∞ (σ(x − x0)), C , σ ∈ IR and x0 ∈ IRn are arbitrary.
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Proof of the proposition

I u∞ is a minimizer implies:

E (u∞) ≤ E

(
u

‖u‖s

)
=
‖∇u‖M
‖u‖s

+
‖u‖qq
q‖u‖qs

∀u ∈ D1,q(IRn)

with equality if u = u∞.

I Scaling: uλ(x) = u
(
x
λ

)
, λ > 0:

E (u∞) ≤ λn−1−
n
s
‖∇u‖M
‖u‖s

+ λn(1−
q
s
) ‖u‖

q
q

‖u‖qs
:= f (λ)

I Optimization in λ:

E (u∞) ≤ min
λ>0

f (λ) = f (λmin)

gives the sharp L1 Gagliardo-Nirenberg inequality, with u∞ as
an optimal function.
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Goals

I Generalize the results on the particular problem (P) of the
proposition (i.e., extremality of characteristic functions of
balls for (P) when F (t) = tq

q and G (t) = ts , 1 ≤ q < s < 1∗)
to more general functions F and G .

I Derive other geometric inequalities involving the total
variation with their best constants and optimal functions, by
choosing different examples of functions F and G .
Example. The sharp L1 logarithmic Sobolev inequality is
obtained by choosing F (t) = t ln t and G (t)) = t,∫

IRn
|u| ln

(
enγn|u|
‖u‖L1(IRn

)

)
≤
∫
IRn

d |∇u|, ∀u ∈ BV(IRn).

I Prove existence and nonexistence results for some PDEs
involving the 1-Laplacian operator ∆1u := div

(
∇u
|∇u|

)
; see

[Demengel, ‘02], [Bellettini, Caselles, Novaga, ‘02], [Andreu,
Caselles, D́ıaz, Maz̀on, ‘02].
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The main result

Theorem
Assume that F , G : [0,∞)→ [0,∞) are continuous and increasing
functions of class C 1 on (0,∞) s.t. F (0) = G (0) = 0 and
limt→∞ G (t) =∞.

I Then the infimum value m±,

m± := inf

{
E±(u) =

∫
IRn

d|∇u| ±
∫
IRn

F (|u|) :

∫
IRn

G (|u|) = 1

}
of problem (P) is given by the 1-dimensional variational
problem

m± = inf
α>0

H±(α)

where

H±(α) := nγ
1/n
n

α

G (α)(n−1)/n
± F (α)

G (α)
.
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The main result

Theorem (Continuation)

I If the infimum m± of H±(α) is attained, that is, if the set V±
of the minimizers of H±(α), α > 0, is non-empty,

V± := {α > 0, H±(α) = m±} 6= ∅,

then (P) has minimizers, which are characteristic functions of
balls; more precisely the minimizers of (P) are of the form

±uα(x0 + .) with x0 ∈ IRn, α ∈ V±,

where

uα := αχBρα and ρα :=
1

γ
1/n
n G (α)1/n

.

I On the contrary, if the infimum m± of H±(α) is not attained
in (0,∞), then (P) has no minimizers.
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Proof of the main theorem - Claim 1

I Claim 1. Symmetrization. By symmetrization and a
convenient change of variable u 7→ v , we can rewrite problem
(P) as the minimization of a strictly concave functional J±(v)
over a convex set K .
More precisely, (P) is equivalent to

(P)v : m± = inf{J±(v) : v ∈ K}

where

J±(v) := nγn

∫ ∞
0

v (n−1)/n(t)dt ± γn
∫ ∞
0

F ′(t)v(t)dt

is a strictly concave functional, and K is the set of
nonincreasing real-valued functions v : (0,∞)→ (0,∞)
satisfying the linear constraint∫ ∞

0
G ′(t)v(t)dt =

1

γn
.
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Proof of claim 1

I Symmetrization. Replacing u by its radially-symmetric
decreasing rearrangement u∗ will decrease the energy,
E±(u∗) ≤ E±(u), but conserve the constraint,∫
IRn G (|u|) =

∫
IRn G (|u∗|); this follows from Pòlya-Szegö

inequality and equimeasurability of rearrangement.
Then the minimization in (P) can be performed over the u∗.

I For such a u∗, the level set {u∗ > t} is a ball centered at the
origin; call β(t) > 0 its radius. Then by the co-area formula
[Fleming-Rishel, ‘60] and the layer cake representation
(Cavalieri formula), we can rewrite E±(u∗) in terms of βn(t).

I It is more convenient to use the change of variable v = βn,
and write E±(u∗) in terms of v , so that E±(u∗) = J±(v).

I With this change of variable, the constraint in (P) becomes

1 =

∫
IRn

G (|u∗|) = γn

∫ ∞
0

G ′(t)v(t)dt.
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Proof of the main theorem - Claim 2

I Claim 2. Reduction to a 1-d problem. The minimizer of
(P)v - if it exists - is attained at a function of the form
vα :=

χ[0,α]

γnG(α) for some α > 0 (i.e. an extreme point of K ).

Moreover, J±(vα) = H±(α), and (P)v reduces to the 1-d
problem

m± = inf
α>0

J±(vα) = inf
α>0

H±(α)

I Proof:
I vα ∈ K implies m± ≤ infα>0 J±(vα) = infα>0 H±(α).
I Conversely, any v ∈ K can be represented in terms of the vα as

v(t) =

∫ ∞
0

vα(t)dµv (α) where dµv (α) := −γnG (α)v ′(α)

is a probability measure on (0,∞); so that by Jensen’s
inequality, we have for all v ∈ K

J±(v) ≥
∫ ∞
0

J±(vα)dµv (α) =

∫ ∞
0

H±(α)dµv (α) ≥ inf
α>0

H±(α).
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Proof of the main theorem - Claim 3

I Claim 3. Characterization of the minimizers. The
minimizers of (P) - if they exist - are of the form ±uα(x0 + .)
where α is a minimizer of H±, i.e. H±(α) = m±, and
uα = αχBρα with ρα = 1

γ
1/n
n G(α)1/n

I Proof
I Existence. If α > 0 is a minimizer of H±, i.e. H±(α) = m±,

then the corresponding uα(x) is admissible in (P) and satisfies
m± = H±(α) = J±(vα) = E±(uα); so uα is a minimizer of
(P).
And since E±(u) is invariant under translation and sign change,
u 7→ −u(x0+), then the functions ±uα(x0 + .) are minimizers.

I Unique characterization. If ū is another minimizer of (P),
then there exists a minimizer α of H± s.t ū differs from ±uα by
a translation; this follows from rearrangement argument, strict
concavity of J±, and optimality in isoperimetric inequality.

I Non-existence. If infα>0H±(α) is not attained in (0,∞),
∃ uαn s.t. αn → 0 or αn →∞; then (P) has no minimizers.
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Extension and Application to sharp inequalities

I Extensions. The main result extends naturally to continuous
functions F which are difference of two increasing functions
F1 and F2 such that F1(0) = F2(0) = 0. Indeed, we can show
that E±(u∗) = J±(v) by decomposing E±(u∗) into terms of
F1 and F2 and combine them back later; e.g. F (t) = t ln t.

Proposition (sharp inequalities)

Assume F and G are such that H±(α) has a minimizer α∞,
H±(α∞) = m±, and consider the corresponding minimizer uα∞ of
(P). Then the sharp inequality∫

IRn
d |∇u| ±

∫
IRn

F (|u|) ≤ m±

holds for all functions u with finite total variation satisfying the
constraint

∫
IRn G (|u|) = 1. Moreover, the optimal functions are

u = ±uα∞(x0 + .), x0 ∈ IRn.
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Examples of sharp inequalities

I Sharp L1 logarithmic Sobolev inequality. Choosing
F (t) = t ln t and G (t) = t in the proposition, H−(α) is
attained at α∞ = 1/γn, and uα∞ = χB1/γn. We then have∫

IRn
|u| ln

(
enγn|u|
‖u‖L1(IRn

)

)
≤
∫
IRn

d |∇u|, ∀u ∈ BV(IRn)

and the optimal functions are ±uα∞(x0 + .)

I Sharp L1 Gagliardo-Nirenberg inequality. Choose
F (t) = tq/q and G (t) = ts , with 1 < q < s < 1∗ in the
proposition. Then H+(α) has a unique minimizer and we
deduce the sharp L1 Gagiardo-Nirenberg inequality.

I Sharp L1 Sobolev inequality. Choose F = 0 and
G (t) = t1

∗
. Then H(α) = nγ1/n has all α > 0 as minimizers,

and we deduce the sharp L1 Sobolev inequality.
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Application to PDEs involving 1-Laplacian

Proposition

If u is a non-negative minimzer of

inf

{∫
IRn

d|∇u|+
∫
IRn

F (|u|) :

∫
IRn

G (|u|) = 1

}
then u satisfies the 1-Laplacian PDE (i.e. the Euler-Lagrange
equation)

−∆1u + F ′(u) = λG ′(u)

where λ is a Lagrange multiplier for the constraint
∫
IRn G (u) = 1.

Examples.
I Choosing F (t) = tq/q and G (t) = ts with 1∗ < s < q or

1 < q < s < 1∗, then −∆1u = us−1 − uq−1 has nontrivial
nonnegative solutions in D1,q(IRn).

I Similarly, if s < q < 1 + s
n , then −∆1u = us−1 + uq−1 has

nontrivial nonnegative solutions in BV(IRn).
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A non existence result for 1 Laplacian PDEs

I Proposition

In addition to the assumptions on F anf G in the main theorem, if
F is convex and G is concave, then for any λ ≥ 0, the PDE{

−∆1u = λG ′(u)− F ′(u)
u ≥ 0,

∫
IRn G (u) = 1

(4)

has no solutions.
I Proof.

I The convexity of F and concavity of G imply that u solves the
PDE (4) iff it is a minimizer of the variational problem (P).

I But H+(α) does not have a minimizer in (0,∞); in fact,
m+ = 0 as limα→0+ H+(α) = 0 but H+(α) > 0 ∀α > 0.
Therefore, problem (P) has no minimizers, and so the PDE
(4) has no solutions.

I Example. Choosing G (t) = t and F (t) = tq/q, we have:
If q > 1, the PDE −∆1u = 1− uq−1 has no solution in D1,q.
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Thank you!

Happy Birthday Terry!
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