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The problem

» Given two increasing functions F and G on [0, c0) such that
F(0) = G(0) = 0 and lim;— G(t) = 0o, what are the
infimum value my4 and the minimizers u of the variational
problem

P m :——inf{/ qu:l:/ F(lu :/ G(|lu ——1}
( ) * R" | | R" (| |) R (| |)
» n > 2is a given integer, and
d|Vu|=||Vu n

denotes the total variation of a function v : IR" — IR, that is,
HVUHM(]R") ‘= sup {/IR" udivg : ¢ € CHIR™; R), |4(x)| < 1}

» The mininization in problem (P) is performed over functions
u:IR" — R having finite total variation HVUHM(]Rn) < 00,
and satisfying the constraint [jp» G(|u|) = 1.
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Problem (P) is motivated by the sharp L' Gagliardo-Nirenberg
inequalities, which can be obtained from the L!-Sobolev inequality
and an interpolation inequality.

» Sharp L! Sobolev inequality. Denote 1* = then

n— 1’
lullee gy < () IV ullyqmry Yo € BVIRY) (1)

where 7, is the Lebesgue measure of the unit ball in IR".

» The best constant in the L' Sobolev inequality is (n'y,l,/")_l,
and optimal functions are characteristic functions of balls
[Federer-Fleming, '60]; (proved also by optimal transport).

» Interpolation inequality. For s, q st. 1<g<s<1¥,

||U||Ls R") < HLI| Lq(]Rn ||u||L1* (R")’ (2)
where % = (7;) + ]% ie. 0= ( n(s—q)

L . s(n—q(n-1))" .
» Characteristic functions of balls are also optimal functions in

the interpolation inequality (2).
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» Sharp L! Gagliardo-Nirenberg inequalities. Combining the
L'-Sobolev and the interpolation inequalities, we obtain the
L' Gagliardo-Nirenberg inequality: for 1 < g < s < 1%,

L n
oy < (m3™) ™ IVl ey ey Ve € DYOR?)
(3)
where DVI(IR") := {u € LI(IR") : HVUHM(]Rn) < oo}

» Characteristic functions of balls are optimal functions in (3) as
they are optimal in both L! Sobolev and interpolation
inequalities. Then the L!-Gagliardo-Nirenberg inequality (3) is

-0
sharp with the best constant being (n'y,l,/"> .
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Link between (P) and L' Gagliardo-Nirenberg inequalities

By a scaling argument, the sharp L! Gagliardo-Nirenberg inequality
(3) is related to problem (P) when F(t) = £ and G(t) = t°.

Proposition (A, 2008)
Let g and s be such that 1 < q < s < 1*. If the (P)-type problem

_ 1
my = mf{E(u) = /IR" dVu| + q/]R lul9: flulls = 1}

admits a minimizer us,, then the L' Gagliardo-Nirenberg inequality
(3) holds, and the best constant Kop: and optimal functions are
explicitly given in terms of the minimizer uy, as:
n+s—n
Kopt = [K(n,q,s )/m+]5["—q("—q1>), where my = E(ux),
K(nq,s)=—F — a=n—-s(n—1), B=n(s—q), and
(qa) o+B poth
Us xo(X) = Cuso (0(x — x0)), C,0 € IR and xo € R" are arbitrary.
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Proof of the proposition

> Uy IS a minimizer implies:

u > _ IVulla

lulls

| ullg

_l’_

Yu € DM(IR™)
fulls — qllulld

E(us) < E(

with equality if u = U.
> Scaling: uy(x) =u (%), A>0:

q
E(uoo) S )\n—l—g HVUHM 4 )\n(l—%) ”u”g — f()\)
ulls ulls
» Optimization in \:

E(usx) < T>|8 f(A) = f(Amin)

gives the sharp L' Gagliardo-Nirenberg inequality, with us as
an optimal function.
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Goals

» Generalize the results on the particular problem (P) of the
proposition (i.e., extremality of characteristic functions of
balls for (P) when F(t) = % and G(t)=t5,1<g<s< 1%
to more general functions F and G.

» Derive other geometric inequalities involving the total
variation with their best constants and optimal functions, by
choosing different examples of functions F and G.

Example. The sharp L! logarithmic Sobolev inequality is
obtained by choosing F(t) = tInt and G(t)) = t,

/n|u||n (He%‘”’> g/ d|Vul, VueBV(R").
R UHLl(]R") R

» Prove existence and nonexistence results for some PDEs

involving the 1-Laplacian operator Aju := div |gu| ; see

[Demengel, '02], [Bellettini, Caselles, Novaga, ‘02], [Andreu,
Caselles, Diaz, Mazon, ‘02].

Martial Agueh University of Victoria, Canada A class of total variation minimization problems



The main result

Theorem
Assume that F, G : [0,00) — [0, 00) are continuous and increasing

functions of class C* on (0,00) s.t. F(0) = G(0) =0 and
» Then the infimum value m4.,

m = inf{Ei(u)—/IRn d\VuH:/]Rn F(\u\):/IR" G(\u\)—l}

of problem (P) is given by the I-dimensional variational

problem
my = C|Yr;f0 Hi(a)

where
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The main result

Theorem (Continuation)

» If the infimum my of Hy(«) is attained, that is, if the set V4
of the minimizers of Hy(a), a > 0, is non-empty,

Vi = {a >0, Hi(a) = mi} # 0,

then (P) has minimizers, which are characteristic functions of
balls; more precisely the minimizers of (P) are of the form

tua(xo+.) with xp€R" a€ Vg,

where
1

"G a)t/n

» On the contrary, if the infimum my of Hi(«) is not attained
in (0,00), then (P) has no minimizers.

Ug := aXB,, and p =
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Proof of the main theorem - Claim 1

» Claim 1. Symmetrization. By symmetrization and a
convenient change of variable u — v, we can rewrite problem
(P) as the minimization of a strictly concave functional Ji(v)
over a convex set K.

More precisely, (P) is equivalent to

(Plv: my=inf{Je(v):veK}

where
[e.e] o
Ji(v) == M / v/ () dt £, / F'(t)v(t)dt
0 0
is a strictly concave functional, and K is the set of

nonincreasing real-valued functions v : (0, 00) — (0, c0)
satisfying the linear constraint

0o ) _i
/0 G/(6)v(t)de = .
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Proof of claim 1

» Symmetrization. Replacing u by its radially-symmetric
decreasing rearrangement u* will decrease the energy,
E.(u*) < Ei(u), but conserve the constraint,

Jirr G(lu]) = Jr~ G(|u*]); this follows from Polya-Szegé
inequality and equimeasurability of rearrangement.
Then the minimization in (P) can be performed over the u*.

» For such a u*, the level set {u* > t} is a ball centered at the
origin; call B(t) > 0 its radius. Then by the co-area formula
[Fleming-Rishel, ‘60] and the layer cake representation
(Cavalieri formula), we can rewrite Ey (u*) in terms of 5"(t).

» It is more convenient to use the change of variable v = 37,
and write Ex(u*) in terms of v, so that EL(u*) = Ji(v).

» With this change of variable, the constraint in (P) becomes

1= [ = [ G
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Proof of the main theorem - Claim 2

» Claim 2. Reduction to a 1-d problem. The minimizer of
(P), - if it exists - is attained at a function of the form
Vo i= WX[C(:.’(‘Z][) for some o > 0 (i.e. an extreme point of K).

Moreover, Ji(vy) = H+(a), and (P), reduces to the 1-d
problem

e = Jeve) = Jof Hale)
» Proof:

> v, € K implies my <infasoJi(ve) = infaso He(a).
» Conversely, any v € K can be represented in terms of the v, as

v(t) = /000 Vo(t)duy (o) where du,(a) := —v,G(a)v'(a)

is a probability measure on (0, 00); so that by Jensen's
inequality, we have for all v € K

Ji(v)z/ooo Ji(va)dpv(a):/ooo Hi(a)dp () > inf Hi(a).
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Proof of the main theorem - Claim 3

» Claim 3. Characterization of the minimizers. The
minimizers of (P) - if they exist - are of the form £ uq(x0 + .)
where « is a minimizer of H, i.e. Hy(a) = my, and

Uy = @ with =1
fo" XBp,, Pa 'y,l,/"G(a)l/"
» Proof

» Existence. If @ > 0 is a minimizer of Hy, i.e. Hi(a) = my,
then the corresponding u,(x) is admissible in (P) and satisfies
my = Hy(o) = Ji(va) = Ex(Ua); 50 U, is @ minimizer of
(P).

And since Ej (u) is invariant under translation and sign change,
u+— —u(xp+), then the functions u,(xo + .) are minimizers.

» Unique characterization. If i is another minimizer of (P),
then there exists a minimizer o of Hy s.t I differs from +u, by
a translation; this follows from rearrangement argument, strict
concavity of Ji, and optimality in isoperimetric inequality.

» Non-existence. If inf,~0 H+ () is not attained in (0, 00),
Ju,, st. ap — 0 or ay — o0; then (P) has no minimizers.
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Extension and Application to sharp inequalities

» Extensions. The main result extends naturally to continuous
functions F which are difference of two increasing functions
F1 and F, such that F;(0) = F2(0) = 0. Indeed, we can show
that Ex(u*) = Ji(v) by decomposing EL(u*) into terms of
F1 and F, and combine them back later; e.g. F(t) = tInt.
Proposition (sharp inequalities)
Assume F and G are such that Hy(«) has a minimizer s,

Hyi(a) = my, and consider the corresponding minimizer u,,_, of
(P). Then the sharp inequality

/ d|Vu|j:/ F(lu]) < ms
R’ R’

holds for all functions u with finite total variation satisfying the
constraint f]R" (Ju]) = 1. Moreover, the optimal functions are
u= :I:uaoo(xo + ) xp € R".
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Examples of sharp inequalities

» Sharp L! logarithmic Sobolev inequality. Choosing
F(t) =tInt and G(t) =t in the proposition, H_(«) is
attained at aoo = 1/7,, and us.. = X8, /7n. We then have

n
/ ufin [ Emlul g/ d|Vu|, YueBV(R")
R" ||U||L1(]R”) R"

and the optimal functions are +u,__(xo + .)

» Sharp L! Gagliardo-Nirenberg inequality. Choose
F(t) =t9/q and G(t) = t°, with 1 < g < s < 1* in the
proposition. Then Hy(«) has a unique minimizer and we
deduce the sharp L' Gagiardo-Nirenberg inequality.

» Sharp L! Sobolev inequality. Choose F = 0 and
G(t) = t'". Then H(a) = ny'/" has all a > 0 as minimizers,
and we deduce the sharp L' Sobolev inequality.
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Application to PDEs involving 1-Laplacian

Proposition

If u is a non-negative minimzer of

inf{/]R d|Vuy+/ (Jul) : / G(Jul) —1}

then u satisfies the 1-Laplacian PDE (i.e. the Euler-Lagrange
equation)
—Aju+ F'(u) = \G'(u)

where X is a Lagrange multiplier for the constraint IIR" G(u)=1.
Examples.

» Choosing F(t) = t9/q and G(t) = t°* with 1* <s < q or
1< g<s<1¥ then —Aju= u$~1 — 4971 has nontrivial
nonnegative solutions in DY9(IR").

» Similarly, if s < g <1+ 7, then —Aju= v+ u97! has
nontrivial nonnegative solutions in BV(IR").
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A non existence result for 1 Laplacian PDEs

» Proposition
In addition to the assumptions on F anf G in the main theorem, if
F is convex and G is concave, then for any A > 0, the PDE

—Aju = \G'(u) — F'(u)
{ u 210, Jrr G(u) =1 (4)

has no solutions.
» Proof.
» The convexity of F and concavity of G imply that u solves the
PDE (4) iff it is a minimizer of the variational problem (7).
» But Hi(«) does not have a minimizer in (0, c0); in fact,
my =0 as limg_,0+ Hy(a) =0 but Hy(a) > 0 Va > 0.
Therefore, problem (P) has no minimizers, and so the PDE
(4) has no solutions.
» Example. Choosing G(t) =t and F(t) = t9/q, we have:
If g > 1, the PDE —Aju =1 — 1971 has no solution in D9,
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Thank you!

Happy Birthday Terry!
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