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Motivation: nonsmooth/discontinuous feedback

Arsie, A., Ebenbauer, C., Locating omega-limit sets using height
functions. J. Differential Equations 248, 2458–2469 (2010)

f : IRn → IRn locally Lipschitz continuous.

(1) ẋ(t) = f (x(t)), x(0) = x0,

Carathéodory solutions on [0,+∞): a function ϕ : [0,+∞)→ IRn

which is absolutely continuous and satisfies (1) for a.e.
t ∈ [0,+∞).

ω-limit set ω(x0): the collection of points y ∈ IRn for each of
which there exists a Carathéodory solution ϕ(·, x0) of (1) which is
bounded on [0,+∞), and a sequence tk →∞ such that
ϕ(tk , x0)→ y as k →∞.



Theorem (Arsie, A., Ebenbauer (2010).

Assume we are given a closed set S ⊂ IRn which contains ω(x0)
and a function V : G → IR which is continuously differentiable over
a neighborhood of S. Define U := {x ∈ S : V̇f (x) < 0} and
assume that V (S \ U) does not contain any open interval.
Then the ω-limit set ω(x0) is contained in a connected subset of
the set S \ U .



Differential inclusion

(2) ẋ(t) ∈ F (t, x(t)), x(0) = x0

Standing assumption. For every x0 ∈ IRn there exist positive
reals r and M such that

‖F (t, x)‖ ≤ M for every x ∈ IB r (x0) and every t ≥ 0.

ω-limit set ω(x0): nonempty if, e.g., F is either upper
semi-continuous with compact convex values or lower
semi-continuous, and an appropriate growth condition holds.

The upper Dini directional derivative of a function V : IRn → IR at
x in the direction l is

D+V (x ; l) := lim sup
h↘ 0

V (x + hl)− V (x)

h
.



Localization of the ω-limit set

Theorem.

Let S be a closed subset of IRn, U be a relatively open subset of S,
G be an open set containing S and let Z := (G \ S) ∪ U .
Let V : G → IR be locally Lipschitz and W : Z → IR be lower
semicontinuous and suppose that the following conditions hold:

(B1) For every ε > 0 and for each bounded solution ϕ(·, x0) of
(2) there exists T > 0 such that dist(ϕ(t, x0),S) < ε for every
t ≥ T ;

(B2) W (x) > 0 for every x ∈ U ;
(B3) supv∈F (t,x)D

+V (x ; v) ≤ −W (x) for every x ∈ Z ;
(B4) Every open interval contained in V (S \ U) has empty

intersection with V (U).
Then the set ω(x0) is contained in S \ U .



Sketch of proof

On the contrary, assume there exists x̄ ∈ ω(x0) ∩ U . Then prove
that there exists

c ∈ V (x̄ − ε,V (x̄) + ε)

for a specially chosen ε (sufficiently small) such that

{x ∈ S + δIB) ∩ K | V (x) = c} ⊂ Z ∪ {x |W (x) > 0}.

Take a sequence tk →∞ and estimate V (ϕ(t) from above by
V (x̄). Then show that

V (ϕ(t) < c for t ≥ tk + τ

for a specially chosen τ .
Obtain contradiction by using the assumption for W .
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