Terryfest 2015, Limoges

$\omega\text{-limit sets}$ for differential inclusions

Asen L. Dontchev

Mathematical Reviews (AMS) and the University of Michigan

Based on joint work with M. Krastanov and V. Veliov

Supported by NSF Grant DMS-1008341

Arsie, A., Ebenbauer, C., Locating omega-limit sets using height functions. J. Differential Equations 248, 2458–2469 (2010)

 $f: \mathbb{R}^n \to \mathbb{R}^n$ locally Lipschitz continuous.

(1)
$$\dot{x}(t) = f(x(t)), \quad x(0) = x_0,$$

Carathéodory solutions on $[0, +\infty)$: a function $\varphi : [0, +\infty) \to \mathbb{R}^n$ which is absolutely continuous and satisfies (1) for a.e. $t \in [0, +\infty)$.

 ω -limit set $\omega(x_0)$: the collection of points $y \in \mathbb{R}^n$ for each of which there exists a Carathéodory solution $\varphi(\cdot, x_0)$ of (1) which is bounded on $[0, +\infty)$, and a sequence $t_k \to \infty$ such that $\varphi(t_k, x_0) \to y$ as $k \to \infty$.

Theorem (Arsie, A., Ebenbauer (2010).

Assume we are given a closed set $S \subset \mathbb{R}^n$ which contains $\omega(x_0)$ and a function $V : G \to \mathbb{R}$ which is continuously differentiable over a neighborhood of S. Define $\mathcal{U} := \{x \in S : \dot{V}_f(x) < 0\}$ and assume that $V(S \setminus \mathcal{U})$ does not contain any open interval. Then the ω -limit set $\omega(x_0)$ is contained in a connected subset of the set $S \setminus \mathcal{U}$.

(2)
$$\dot{x}(t) \in F(t, x(t)), \quad x(0) = x_0$$

STANDING ASSUMPTION. For every $x_0 \in \mathbb{R}^n$ there exist positive reals r and M such that

 $\|F(t,x)\| \le M$ for every $x \in B_r(x_0)$ and every $t \ge 0$.

 ω -limit set $\omega(x_0)$: nonempty if, e.g., F is either upper semi-continuous with compact convex values or lower semi-continuous, and an appropriate growth condition holds.

The upper Dini directional derivative of a function $V : \mathbb{R}^n \to \mathbb{R}$ at x in the direction I is

$$D^+V(x; I) := \limsup_{h \searrow 0} \frac{V(x+hI) - V(x)}{h}.$$

Theorem.

Let S be a closed subset of \mathbb{R}^n , \mathcal{U} be a relatively open subset of S, G be an open set containing S and let $Z := (G \setminus S) \cup \mathcal{U}$. Let $V : G \to \mathbb{R}$ be locally Lipschitz and $W : Z \to \mathbb{R}$ be lower semicontinuous and suppose that the following conditions hold:

(B1) For every $\varepsilon > 0$ and for each bounded solution $\varphi(\cdot, x_0)$ of (2) there exists T > 0 such that $\operatorname{dist}(\varphi(t, x_0), S) < \varepsilon$ for every $t \ge T$;

(B2)
$$W(x) > 0$$
 for every $x \in \mathcal{U}$;

(B3) $\sup_{v \in F(t,x)} D^+ V(x;v) \leq -W(x)$ for every $x \in Z$;

(B4) Every open interval contained in $V(S \setminus U)$ has empty intersection with V(U).

Then the set $\omega(x_0)$ is contained in $S \setminus U$.

On the contrary, assume there exists $\bar{x} \in \omega(x_0) \cap \mathcal{U}$. Then prove that there exists

$$c \in V(\bar{x} - \varepsilon, V(\bar{x}) + \varepsilon)$$

for a specially chosen ε (sufficiently small) such that

$$\{x \in \mathcal{S} + \delta B\} \cap K \mid V(x) = c\} \subset Z \cup \{x \mid W(x) > 0\}.$$

Take a sequence $t_k \to \infty$ and estimate $V(\varphi(t)$ from above by $V(\bar{x})$. Then show that

$$V(arphi(t) < c ext{ for } t \geq t_k + au$$

for a specially chosen τ . Obtain contradiction by using the assumption for W.

THANK YOU!