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To dig a hole in the ground and excavate valuable minerals
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1. Project evaluation: is it worth investing?
» Where to dig? How deep? What to process?
Optimum open pit problem (determining ultimate pit limits)
2. Rough-cut planning: take time into account
» Where, when and what to excavate, to process
subject to capacity and other resource constraints,
and the time value of money (cash flows)
» Process choices, major equipment decisions
Mine production planning problem (decisions over time)
3. Detailed operations planning
» Detailed mine design: benches, routes, facilities
» Operations scheduling, flows of materials, etc.

4. Execution. ..
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Optimum Open Pit: Slope Constraints

The pit walls cannot be too steep, else they may collapse

L 7

Angouran lead & zinc mine, Iran Bingham Canyon copper mine, Utah
(25 million tons rock slide, 2006) (massive landslide, 10 April 2013)
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[Lerchs and Grossmann, 1965]

Divide the volume of interest into 3D blocks

» typically rectangular, with vertical sides

> the slope constraints are approximated by precedence
constraints

> typically, 1:5 or 1:9 pattern

> it is easy to determine the net profit from excavating, and
possibly processing, the block itself

Leads to a nicely structured (dual network flow, minimum cut)
discrete optimization problem

» implemented in commercial software (Whittle, Geovia)
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Discretized (block) models:
» are very large (100,000s to millions of blocks)
» production planning models even larger (x number of periods)
> the real problem is, to a large extent, continuous:
» ore density and rock properties tend to vary continuously
» their distributions are estimated (“smoothed”) from sample
(drill hole) data and other geological information
» block precedences only roughly model the slope constraints

Earlier continuous space models:
» Matheron (1975) (focus on “cutoff grade” parametrization)
» Morales (2002), Guzman (2008)
» Alvarez & al. (2011) (also, Griewank & Strogies, 2011, 2013):
calculus of variations model in functional space
» determine optimum depth ¢(y) under each surface point y
s.t. bounds on the derivative of ¢ (wall slope constraints)
All these continuous space approaches suffer from lack of convexity
» how to deal with local optima?
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» Let Bt :={g(z) > 0} and E~ := {g(z) < 0} (compact sets)
» Add a sink w
» unallocated profits from excavated points will be sent to w
and a source «
» unallocated costs of unexcavated points will be paid by «

» Let X := ET U{a} and Y := E~ U {w} (also compact)
» endowed with non-negative measures i and v defined by

p{a}) = [5-lg(2)ldz  plgs = g(2)dz
({w} [+ 9(2)dz vlp- = lg(z)|dz

» Profit allocations are allowed
» from every profitable x € E*+ to every y € T'(x) N B~
» from source a to all y € E~ (unpaid costs)
» from all x € E™ to sink w (unallocated, or “excess” profits)
These restrictions will be modelled by a “transportation” (or
allocation) cost function ¢: X x Y — R
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Allocation “Costs” and Optimum Profit Allocation

X Y c(z,y)
reEt y € I'(x) 0
rebt y¢Tl(z), ye E= +oo
re bt Yy =w 1
=« yey 0

> Minimizing total “costs” <= minimizing total unallocated profits
Lemma: c is lower semi-continuous (l.s.c.)
Set I (1, v) of nonnegative Radon measures (profit allocations) 7
with marginals 7x =y and my = v
Optimal transportation problem in Kantorovich form:

min E™[¢] := /XXY c(z,y)dr st mell(u,v) (K)

s
Proposition 1: Problem (K) has a solution

Proof: The set of positive Radon measures on compact space X x Y is
weak-* compact, and the map m — E™[¢] is weak-* |.s.c. O
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The Kantorovich Dual

Potentials (duals, Lagrange multipliers)
» p € L' (X, i) associated with 7y = p
» ¢ € L'(Y,v) associated with my = v

Dual admissible set:
A:={(p,q) : p(z) —q(y) < c(z,y) (n,v)-as}

Dual objective:

o) = [ pau= [ qav
= | o —aw@ydu [ (@)= pla)av

Kantorovich dual: supJ(p,q) st (p,q) €A (D)

Theorem [Kantorovich, 1942]: When the cost function c is I.s.c.,
inf(K) = sup(D)

> there is no duality gap (in continuous variables)
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Connection to the Optimum Pit Problem

Let F beapit, FT:=FNET and F~:=FNE~
Define pp: X - R and qr : Y — R by:

lifze Ft

pr(a) =0, prp(z)= { 0 otherwise
- [ lifyeF-

qr(w) =0, qr(y) = { 0 otherwise

Then (pr, qr) is admissible (i.e., in A) and J (pr,qr) = g(F)
Corollary:  sup(P) < inf(K)

> i.e., transportation problem (K) is a weak dual to the optimum pit
problem (P)
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Given ¢: X XY — R, define the c-Fenchel conjugates
(or c-Fenchel-Legendre transforms)

» p": Y — R of any function p € L' (X, u) by
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c-Fenchel Conjugates

Given ¢: X XY — R, define the c-Fenchel conjugates
(or c-Fenchel-Legendre transforms)

» p": Y — R of any function p € L' (X, u) by

PH(y) := esssup (p(z) — c(z,y))
zeX

» ¢": X - R of any function g € L'(Y,v) by

¢ (z) = essinf (q(y) + c(z, )

where esssupf(z) = inf Nen SUPze x\ v f (%), where N is the set of measurable
subsets N C X with 4 (N) =0

» To simplify, we'll write sup and inf instead of esssup and essinf

> Similarly, all equalities and inequalities will be p-a.e. in X and v-a.e. inY
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[Carlier, 2003; Ekeland, 2010]

Forallz € X,y €Y,

p(z)

c(z,y) + P (y) < p” ()
a(y) > ¢

<
> ¢'(z) — c(z,y) > ¢*(y)
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Properties of c-Fenchel Conjugates

[Carlier, 2003; Ekeland, 2010]

Forallz € X,y €Y,
p(x) < c(@,y) +p'(y) < p(x)
q(y) > ¢ (&) — c(z,y) > ¢*(y)
c-Fenchel duality:

PP =pt and ¢¥ =g

Monotonicity:
p1 < p2 = pﬁ < pg
1<@p = ¢ <d¢
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pﬁ(y) ‘= max {p(a), sup p(x)} forye B~
z :yel(z)

pH(w) = max {p(a), sup p(w) — 1}

zeE+

1+¢q(w), inf Q(y)} forz € Bt
y€el'(z)
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c-Fenchel Transforms for the Open Pit Dual Problem

p*(y) := max {p(a% sup p(x)} fory € B~
x : yel'(x)

pH(w) = max {p(a), sup p(z) — 1}

zeE+

el (x)
#la) = min {qfe), ing o)}

¢ (z) := min {1 + q(w), i]lgf q(y)} for x € BT
y

pf and ¢” are increasing with respect to I':
7 el(zr) = qb (x') > qb(:n)
v €T(y) = p (V) > p'(y)

For a pit F, szq?: and QF:P%
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Translation Invariance

Given (p,q) € A and constants pg, p1, qo, q1 satisfying:

w(ET) (@o—p)—v(E")(po—q1) =0

define p and ¢ by:

Then:

p(e) = p(a) — po
p(x) =p(x) —p; for z€ BT
q(w) = q(w) — qo
q(y) =qly) —qu for y€ E~



c-Fenchel Transforms Give Local Improvements



c-Fenchel Transforms Give Local Improvements

If (p,q) € A, then p(z) — q(y) < c(z,y) for all (x,y), so that:
pla) < inf el 1) + a)} = ¢ ()

q(y) > sup {p(z) — c(z.y)} = pH(y)



c-Fenchel Transforms Give Local Improvements

If (p,q) € A, then p(z) — q(y) < c(z,y) for all (x,y), so that:
pla) < inf el 1) + a)} = ¢ ()

q(y) > sup {p(z) — c(z.y)} = pH(y)

Therefore

(p.p") € A and J(p,p")
(qb,q)eA and J(qb,q)



c-Fenchel Transforms Give Local Improvements

If (p,q) € A, then p(z) — q(y) < c(z,y) for all (z,y
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c-Fenchel Transforms Give Local Improvements

If (p,q) € A, then p(z) — q(y) < c(z,y) for all (x,y), so that:
p(z) < igf{C(%y) +qy)} = (x)
aly) 2 sup {p(z) - c(z,9)} = Py)
Therefore
(p.p*) €A and J(p,p*) > J(p,q)
(¢,9) €A and J(¢’,q) > J(p,q)

This implies J(p,q) < J (%) < J (»”,p%)
Letting p := p® and g := p!, we get:
J(p,q) < J(p,q)

p=¢q and §=p
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A Dual Solution

Proposition 2: Problem (D) has a solution (p,q) with

p=¢ 0<p<1l pla)=0
g=p 0<qg<1  qw)=0

Proof: Take a maximizing sequence (pn,¢q,) € A

>

By preceding results, we may assume p,, = q,bl and ¢, = pf,
pn(a) =0, gu(w) =0, and infycp- gn(y) =0

Then, for all z € ET, p,(z) = min {1, inf,crnp- n(y)}

This implies 0 < p,,(x) < 1. Similarly, we get 0 < ¢,,(z) <1

So the family (p,, q,) is equi-integrable in L' (u) x L' (v)

By the Dunford-Pettis Theorem, we can extract a subsequence
which converges weakly to some (p, q)

A convex closed in L(u) x L'(v) is weakly closed, so (p,7) € A

Since J is linear and continuous on L'(u) x L*(v), we get:
J(ﬁa Cj) = lim,, J(Pan) = Sup<D) O
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Complementary Slackness, and Monotonicity

If 7 is optimal to problem (K) and (p, q) to its dual (D), then

0=J(p.q) - /X elay)r = /X (0le) — alo) = el 9))

implying the CS conditions: p(x) — q(y) — c¢(z,y) =0, m—a.e.

Denote y € I'(z) by: y 7 = (the preorder on E defined by I')

Monotonicity Lemma: If (p,G) is an optimal solution to (D)
satisfying the properties in Proposition 2, then
Y'Yy ma" za = a(y) 2 ay) =2 p") 2 p ()
Proof: The first and last inequalities follow from § = 3, p = ¢’, and
c-Fenchel conjugates increasing w.r.t. I’
» the middle inequality follows from

7' (y) = max{ p(a), sup p(x) forally e E~ O
x: yel(x)
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Back to Optimum Pits

Proposition 3: Let (p,q) be an optimal solution to problem (D)
satisfying the properties in Proposition 2. Then

F={z|plx)=1}U{y | qly) =1}

defines an optimum pit.
Proof: F' is measurable, hence by the Monotonicity Lemma, a pit

» Letting T := FNEY and F~ := FNE~, we have

:/F+du—/_d1/§sup(P)

> Let Gt = EX\F* and G~ = E-\F
sincep=1on F*, g=1o0n F~, and p(a) = q(w) = 0,

/du /du—f—/ pdp — /(jdu
Ft - G+
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> Since v is a marginal of m, [, q(y)dv(y) = [, o @(y) dr(z,y)

> c(z,y) =0 or +oc for (z,y) € ET x E~, CS conditions, 0 < p < 1
and 0 < ¢ < 1 imply that p(z) = q(y) 7-a.e. on ET x E~. Thus:

T(FtTxG)=0=m(G" x F™)

(zero allocations between excavated and unexcavated points), and

/E+xG— q(y)dm(z,y) = /G+><G— q(y)dn(z,y) :/ p(z)dr(z,y)

Gt xG—

— /G . p(x)dnm(z,y) = / p(x)du(z)

G+

— J(ﬁ,q)=/wdu—/fdv=g(F)

> Hence g(F)=J(p,q) =sup(D) = inf(K) > sup(P) = g(F) [



Main Result

Theorem: If

» F is compact,

» ' is reflexive, transitive and has a closed graph, and

» g(x) is continuous with [, max{0,g(x)}dz >0,
then:

1.
2.

Problem (P) has an optimum solution, i.e., an optimal pit F'
Its indicator functions (pr, qr) define optimum potentials,
i.e., optimal solutions to (D)

Problem (K) has an optimum solution (profit allocation) and
is a strong dual to (P), i.e., min(K) = max(P)

A pit F' is optimal iff there exists a feasible solution 7 to (K)
such that (pr, qr) satisfies the CS conditions



Theorem [Matheron, 1975; also Topkis, 1976]:

1. The family F of all pits is closed under arbitrary unions and
intersections:

\UFeF and ((FeF forallGCF
Feg Feg



Theorem [Matheron, 1975; also Topkis, 1976]:

1. The family F of all pits is closed under arbitrary unions and
intersections:

\UFeF and ((FeF forallGCF
Feg Feg

» F is a complete Boolean lattice (ring of sets)



Theorem [Matheron, 1975; also Topkis, 1976]:

1. The family F of all pits is closed under arbitrary unions and
intersections:

\UFeF and ((FeF forallGCF
Feg Feg

» F is a complete Boolean lattice (ring of sets)



Theorem [Matheron, 1975; also Topkis, 1976]:

1. The family F of all pits is closed under arbitrary unions and
intersections:

\UFeF and ((FeF forallGCF
Feg Feg

» F is a complete Boolean lattice (ring of sets)

2. The family of all optimum pits is also closed under arbitrary
unions and intersections



Theorem [Matheron, 1975; also Topkis, 1976]:
1. The family F of all pits is closed under arbitrary unions and
intersections:

\UFeF and ((FeF forallGCF
Feg Feg
» F is a complete Boolean lattice (ring of sets)
2. The family of all optimum pits is also closed under arbitrary
unions and intersections

3. There exist a unique smallest optimum pit and a unique
largest optimum pit



Theorem [Matheron, 1975; also Topkis, 1976]:

1. The family F of all pits is closed under arbitrary unions and
intersections:

\UFeF and ((FeF forallGCF
Feg Feg

» F is a complete Boolean lattice (ring of sets)
2. The family of all optimum pits is also closed under arbitrary
unions and intersections

3. There exist a unique smallest optimum pit and a unique
largest optimum pit
» The smallest optimum pit minimizes environmental impact
without sacrificing total profit
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» Dynamic version: profits in the distant future should be
discounted
» Recall: production planning models include excavating and
processing decisions over time, subject to capacity constraints,
and with discounted cash flows
» Taking uncertainties into account:
» geological uncertainties on rock properties, amounts and
location of ore, etc.
» operational uncertainties (disruptions)
» economic uncertainties, in particular, market prices of the
minerals
» Formulating a local maximum-flow, minimum-cut model
(instead of the “global” transportation model)
> as is done for image segmentation and processing?
> a fluid dynamics model?
» Numerical implementation
» different from a blocks model. ..



That's it, folks.

Any questions?




	Introduction: Open Pit Mining
	A Continuous Space Model
	An Optimal Transportation Problem
	The Kantorovich Dual
	Elements of c-Convex Analysis
	Solving the Dual Problem
	Solving the Optimum Pit Problem
	Perspectives

