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Open Pit Mine Planning

1. Project evaluation: is it worth investing?

I Where to dig? How deep? What to process?

Optimum open pit problem (determining ultimate pit limits)

2. Rough-cut planning: take time into account

I Where, when and what to excavate, to process
subject to capacity and other resource constraints,
and the time value of money (cash flows)

I Process choices, major equipment decisions

Mine production planning problem (decisions over time)

3. Detailed operations planning

I Detailed mine design: benches, routes, facilities
I Operations scheduling, flows of materials, etc.

4. Execution. . .
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Optimum Open Pit: Slope Constraints

The pit walls cannot be too steep, else they may collapse

West Angelas iron ore mine, Western Australia

Angouran lead & zinc mine, Iran
(25 million tons rock slide, 2006)

Bingham Canyon copper mine, Utah
(massive landslide, 10 April 2013)
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Discretization: Block Models

[Lerchs and Grossmann, 1965]

Divide the volume of interest into 3D blocks

I typically rectangular, with vertical sides
I the slope constraints are approximated by precedence

constraints

I typically, 1:5 or 1:9 pattern

I it is easy to determine the net profit from excavating, and
possibly processing, the block itself

Leads to a nicely structured (dual network flow, minimum cut)
discrete optimization problem

I implemented in commercial software (Whittle, Geovia)
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Discretized vs Continuous Models?

Discretized (block) models:

I are very large (100,000s to millions of blocks)

I production planning models even larger (× number of periods)

I the real problem is, to a large extent, continuous:

I ore density and rock properties tend to vary continuously
I their distributions are estimated (“smoothed”) from sample

(drill hole) data and other geological information

I block precedences only roughly model the slope constraints

Earlier continuous space models:

I Matheron (1975) (focus on “cutoff grade” parametrization)

I Morales (2002), Guzmán (2008)
I Alvarez & al. (2011) (also, Griewank & Strogies, 2011, 2013):

calculus of variations model in functional space

I determine optimum depth φ(y) under each surface point y
s.t. bounds on the derivative of φ (wall slope constraints)

All these continuous space approaches suffer from lack of convexity
I how to deal with local optima?

.
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Open Pit Problem: a Continuous Space Model

A general model [Matheron 1975]: Given

I compact E ⊂ R3: the domain to be mined
e.g., E = A× [h1, h2], where A ⊂ R2 is the claim

[h1, h2] is the elevation or depth range

I map Γ : E � E: extracting x requires extracting all of Γ(x)

I transitive:
[
x′ ∈ Γ(x) and x′′ ∈ Γ (x′)

]
=⇒ x′′ ∈ Γ(x)

I reflexive: x ∈ Γ(x)

I closed graph: {(x, y) : x ∈ E, y ∈ Γ(x)} is closed

a pit F is a measurable subset of E closed under Γ:
Γ(F ) = F where Γ (F ) := ∪x∈FΓ(x)

I continuous function g : E → R

I g(x)dx net profit from volume element dx = dx1 dx2 dx3 at x
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A Profit Allocation Model

I Let E+ := {g(x) > 0} and E− := {g(x) ≤ 0} (compact sets)
I Add a sink ω

I unallocated profits from excavated points will be sent to ω

and a source α

I unallocated costs of unexcavated points will be paid by α

I Let X := E+ ∪ {α} and Y := E− ∪ {ω} (also compact)

I endowed with non-negative measures µ and ν defined by

µ ({α}) =
∫
E− |g(z)| dz µ|E+ = g(z)dz

ν ({ω}) =
∫
E+ g(z)dz ν|E− = |g(z)| dz

I Profit allocations are allowed

I from every profitable x ∈ E+ to every y ∈ Γ(x) ∩ E−
I from source α to all y ∈ E− (unpaid costs)
I from all x ∈ E+ to sink ω (unallocated, or “excess” profits)

These restrictions will be modelled by a “transportation” (or
allocation) cost function c : X × Y −→ R
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Allocation “Costs” and Optimum Profit Allocation

X Y c(x, y)

x ∈ E+ y ∈ Γ(x) 0
x ∈ E+ y /∈ Γ(x), y ∈ E− +∞
x ∈ E+ y = ω 1
x = α y ∈ Y 0

I Minimizing total “costs” ⇐⇒ minimizing total unallocated profits

Lemma: c is lower semi-continuous (l.s.c.)

Set Π (µ, ν) of nonnegative Radon measures (profit allocations) π
with marginals πX = µ and πY = ν

Optimal transportation problem in Kantorovich form:

min
π

Eπ[c] :=

∫
X×Y

c(x, y)dπ s.t. π ∈ Π(µ, ν) (K)

Proposition 1: Problem (K) has a solution

Proof: The set of positive Radon measures on compact space X × Y is
weak-* compact, and the map π → Eπ[c] is weak-* l.s.c.

.
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The Kantorovich Dual

Potentials (duals, Lagrange multipliers)
I p ∈ L1(X,µ) associated with πX = µ
I q ∈ L1(Y, ν) associated with πY = ν

Dual admissible set:

A := {(p, q) : p(x)− q(y) ≤ c(x, y) (µ, ν)-a.s.}

Dual objective:

J(p, q) :=

∫
X
p dµ−

∫
Y
q dν

=

∫
E+

(p(z)− q(ω)) dµ−
∫
E−

(q(z)− p(α)) dν

Kantorovich dual: sup J(p, q) s.t. (p, q) ∈ A (D)

Theorem [Kantorovich, 1942]: When the cost function c is l.s.c.,

inf(K) = sup(D)

I there is no duality gap (in continuous variables)

.
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Connection to the Optimum Pit Problem

Let F be a pit, F+ := F ∩ E+ and F− := F ∩ E−

Define pF : X → R and qF : Y → R by:

pF (α) = 0, pF (x) =

{
1 if x ∈ F+

0 otherwise

qF (ω) = 0, qF (y) =

{
1 if y ∈ F−
0 otherwise

Then (pF , qF ) is admissible (i.e., in A) and J (pF , qF ) = g(F )

Corollary: sup(P) ≤ inf(K)

I i.e., transportation problem (K) is a weak dual to the optimum pit
problem (P)
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c-Fenchel Conjugates

Given c : X × Y → R, define the c-Fenchel conjugates
(or c-Fenchel-Legendre transforms)

I p] : Y → R of any function p ∈ L1(X,µ) by

p](y) := ess sup
x∈X

(p(x)− c(x, y))

I q[ : X → R of any function q ∈ L1(Y, ν) by

q[(x) := ess inf
y∈Y

(q(y) + c(x, y))

where ess supf(x) = infN∈N supx∈X\N f (x), where N is the set of measurable

subsets N ⊂ X with µ (N) = 0

I To simplify, we’ll write sup and inf instead of ess sup and ess inf

I Similarly, all equalities and inequalities will be µ-a.e. in X and ν-a.e. in Y
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Properties of c-Fenchel Conjugates

[Carlier, 2003; Ekeland, 2010]

For all x ∈ X, y ∈ Y ,

p(x) ≤ c(x, y) + p](y) ≤ p][(x)

q(y) ≥ q[(x)− c(x, y) ≥ q[](y)

c-Fenchel duality:

p][] = p] and q[][ = q[

Monotonicity:

p1 ≤ p2 =⇒ p]1 ≤ p
]
2

q1 ≤ q2 =⇒ q[1 ≤ q[2
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c-Fenchel Transforms for the Open Pit Dual Problem

p](y) := max

{
p(α), sup

x : y∈Γ(x)
p(x)

}
for y ∈ E−

p](ω) := max

{
p(α), sup

x∈E+

p(x)− 1

}
q[(x) := min

{
1 + q(ω), inf

y∈Γ(x)
q(y)

}
for x ∈ E+

q[(α) := min

{
q(ω), inf

y∈E−
q(y)

}
p] and q[ are increasing with respect to Γ:

x′ ∈ Γ(x) =⇒ q[
(
x′
)
≥ q[(x)

y′ ∈ Γ(y) =⇒ p]
(
y′
)
≥ p](y)

For a pit F , pF = q[F and qF = p]F
.
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q[(x) := min

{
1 + q(ω), inf

y∈Γ(x)
q(y)

}
for x ∈ E+

q[(α) := min

{
q(ω), inf

y∈E−
q(y)

}
p] and q[ are increasing with respect to Γ:

x′ ∈ Γ(x) =⇒ q[
(
x′
)
≥ q[(x)

y′ ∈ Γ(y) =⇒ p]
(
y′
)
≥ p](y)
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Translation Invariance

Given (p, q) ∈ A and constants p0, p1, q0, q1 satisfying:

µ
(
E+
)

(q0 − p1)− ν
(
E−
)

(p0 − q1) = 0

define p̃ and q̃ by:

p̃(α) = p(α)− p0

p̃(x) = p(x)− p1 for x ∈ E+

q̃(ω) = q(ω)− q0

q̃(y) = q(y)− q1 for y ∈ E−

Then:
J (p̃, q̃) = J(p, q)
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c-Fenchel Transforms Give Local Improvements

If (p, q) ∈ A, then p(x)− q(y) ≤ c(x, y) for all (x, y), so that:

p(x) ≤ inf
y
{c(x, y) + q(y)} = q[(x)

q(y) ≥ sup
x
{p(x)− c(x, y)} = p](y)

Therefore (
p, p]

)
∈ A and J

(
p, p]

)
≥ J(p, q)(

q[, q
)
∈ A and J

(
q[, q

)
≥ J(p, q)

This implies J(p, q) ≤ J
(
p, p]

)
≤ J

(
p][, p]

)
Letting p̄ := p][ and q̄ := p], we get:

J(p, q) ≤ J (p̄, q̄)

p̄ = q̄[ and q̄ = p̄]
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A Dual Solution

Proposition 2: Problem (D) has a solution (p̄, q̄) with

p̄ = q̄[ 0 ≤ p̄ ≤ 1 p̄(α) = 0

q̄ = p̄] 0 ≤ q̄ ≤ 1 q̄(ω) = 0

Proof: Take a maximizing sequence (pn, qn) ∈ A

I By preceding results, we may assume pn = q[n and qn = p]n
pn(α) = 0, qn(ω) = 0, and infy∈E− qn(y) = 0

I Then, for all x ∈ E+, pn(x) = min
{

1, infy∈Γ(x)∩E− qn(y)
}

I This implies 0 ≤ pn(x) ≤ 1. Similarly, we get 0 ≤ qn(x) ≤ 1

I So the family (pn, qn) is equi-integrable in L1(µ)× L1(ν)

I By the Dunford-Pettis Theorem, we can extract a subsequence
which converges weakly to some (p̄, q̄)

I A convex closed in L1(µ)× L1(ν) is weakly closed, so (p̄, q̄) ∈ A
I Since J is linear and continuous on L1(µ)× L1(ν), we get:

J(p̄, q̄) = limn J(pn, qn) = sup(D)

.
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Complementary Slackness, and Monotonicity

If π is optimal to problem (K) and (p, q) to its dual (D), then

0 = J(p, q)−
∫
X×Y

c(x, y)dπ =

∫
X×Y

(
p(x)− q(y)− c(x, y)

)
dπ

implying the CS conditions: p(x)− q(y)− c(x, y) = 0, π–a.e.

Denote y ∈ Γ(x) by: y % x (the preorder on E defined by Γ)

Monotonicity Lemma: If (p̄, q̄) is an optimal solution to (D)
satisfying the properties in Proposition 2, then

y′′ % y′ % x′′ % x′ =⇒ q̄
(
y′′
)
≥ q̄

(
y′
)
≥ p̄(x′′) ≥ p̄

(
x′
)

Proof: The first and last inequalities follow from q̄ = p̄], p̄ = q̄[, and
c-Fenchel conjugates increasing w.r.t. Γ

I the middle inequality follows from

p̄](y) = max

{
p̄(α), sup

x : y∈Γ(x)

p̄(x)

}
for all y ∈ E−
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Back to Optimum Pits

Proposition 3: Let (p̄, q̄) be an optimal solution to problem (D)
satisfying the properties in Proposition 2. Then

F := {x | p̄(x) = 1} ∪ {y | q̄(y) = 1}

defines an optimum pit.

Proof: F is measurable, hence by the Monotonicity Lemma, a pit

I Letting F+ := F ∩ E+ and F− := F ∩ E−, we have
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Proof, continued

I Since ν is a marginal of π,
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I Hence g(F ) = J(p̄, q̄) = sup(D) = inf(K) ≥ sup(P) ≥ g(F )
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Main Result

Theorem: If

I E is compact,

I Γ is reflexive, transitive and has a closed graph, and

I g(x) is continuous with
∫
E max{0, g(x)} dx > 0,

then:

1. Problem (P) has an optimum solution, i.e., an optimal pit F

2. Its indicator functions (pF , qF ) define optimum potentials,
i.e., optimal solutions to (D)

3. Problem (K) has an optimum solution (profit allocation) and
is a strong dual to (P), i.e., min(K) = max(P)

4. A pit F is optimal iff there exists a feasible solution π to (K)
such that (pF , qF ) satisfies the CS conditions



Uniqueness?

Theorem [Matheron, 1975; also Topkis, 1976]:

1. The family F of all pits is closed under arbitrary unions and
intersections:⋃

F∈G
F ∈ F and

⋂
F∈G

F ∈ F for all G ⊆ F

I F is a complete Boolean lattice (ring of sets)

2. The family of all optimum pits is also closed under arbitrary
unions and intersections

3. There exist a unique smallest optimum pit and a unique
largest optimum pit

I The smallest optimum pit minimizes environmental impact
without sacrificing total profit
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Perspectives. . .

I Dynamic version: profits in the distant future should be
discounted

I Recall: production planning models include excavating and
processing decisions over time, subject to capacity constraints,
and with discounted cash flows

I Taking uncertainties into account:

I geological uncertainties on rock properties, amounts and
location of ore, etc.

I operational uncertainties (disruptions)
I economic uncertainties, in particular, market prices of the

minerals

I Formulating a local maximum-flow, minimum-cut model
(instead of the “global” transportation model)

I as is done for image segmentation and processing?
I a fluid dynamics model?

I Numerical implementation

I different from a blocks model. . .
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That’s it, folks.

Any questions?
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