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Class of problems: motivations B
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Prior knowledge
(regularization, constraints)
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Class of problems: motivations

Inverse problem

Prior knowledge
(regularization, constraints)

N
I O - xo typically lives
» In alow-dimensional manifold
Y < Rm xo € R" g

Forward model

® Many applications: signal/image processing, machine learning,
statistics, etc..

® Solve an inverse problem through regularization :

Fand G € To(R") ~ min F(z) + G(x)
Data fidelity Regularization, constraints

® G promotes objects living in the same manifold as x. -
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Low-complexity regularization

m%Rn F(x)+ G(z) FandG eTlz(R")
relR™

Low-complexity < Low-dimensional manifold

L .

TerryFest’15-



Low-complexity regularization B

m%Rn F(x)+ G(z) FandG eTlz(R")
relR™

Low-complexity < Low-dimensional manifold

Sparse vectors

|

TerryFest’15-



N N

Low-complexity regularization

Hgl%R% F(x)+ G(z) FandG eTlz(R")

Low-complexity < Low-dimensional manifold

Sparse vectors

R? R3

| G(z) = |zl
(tightest convex relaxation of ;)
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Low-complexity regularization

HEl]%I?l% F(x)+ G(z) FandG eTlz(R")

Low-complexity < Low-dimensional manifold

Sparse vectors Low-rank matrices

R? R3

| G(z) = |zl
(tightest convex relaxation of ;)
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Low-complexity regularization

HEl%R% F(x)+ G(z) FandG eTlz(R")

Low-complexity < Low-dimensional manifold

Sparse vectors Low-rank matrices

——--~

Sym, (R)
R2 RS S— )
| G(z) = ||z, | G(z) = ||z,
(tightest convex relaxation of /) (tightest convex relaxation of rank)
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Proximal splitting and local linear convergence

(Inertial) Forward-Backward
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Douglas-Rachford

Basis Pursuit
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Proximal splitting and local linear convergence

® In all examples, G (and possibly F') enjoy rich structure : partial smoothness
(TBD shortly).
® The rationale behind observed behaviour :
® Finite activity identification.
® Linearization of the implicit steps.
$ Matrix recurrence and rates through sharp spectral analysis.

L .
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Outline

Partial smoothness.

Inertial Forward-Backward.
Douglas-Rachford.
Conclusion and future work.
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Outline

® Partial smoothness.

»
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Partly smooth functions
® A partly smooth function [Lewis 2002] behaves smoothly along a manifold M,
and sharply normal to it.
® The behaviour of the function and its minimizers (or critical points) depend essen-
tially on its restriction to M.

® Offering a powerful framework for sensitivity analysis and activity identification.

TerryFest’15-9



N N

Partly smooth functions

Definition Let R € I'((R™). R is partly smooth at x relative to a set M > «z, i.e.
R € PS, (M), if

(i) (Smoothness) M is a C?-manifold around = and R restricted to M is C* around

xz.
(i) (Sharpness) The tangent space T,(M) = T, := par(0R(z))*.

(iii) (Continuity) The set-valued mapping OR is continuous at x relative to M.

A |||, () O lll (=)

|
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Examples

M =T, ={uecR" ; supp(u) C supp(z)} .

=T, = {u ; suppg(u) C suppg(z)}
= J{b; a» # 0}

= {u ; rank(u) = rank(x)} .

:: {ueRY ; us ocsign(zy)} N

H H } TerryFest’15-11



Calculus rules

Proposition ( )

® Sum and pre-composition : The set of continuous convex partly smooth func-
tions is closed under addition and pre-composition by a linear operator (under a
mild transversality condition).

L .
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Calculus rules

Proposition ( )
® Sum and pre-composition : The set of continuous convex partly smooth func-
tions is closed under addition and pre-composition by a linear operator (under a
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® Smooth perturbation : If a function is partly smooth function, then so is its

smooth perturbation.
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Calculus rules

Proposition ( )
® Sum and pre-composition : The set of continuous convex partly smooth func-
tions is closed under addition and pre-composition by a linear operator (under a

mild transversality condition).
® Smooth perturbation : If a function is partly smooth function, then so is its

smooth perturbation.
® Spectral lift : Absolutely permutation-invariant convex and partly smooth func-

tions of the singular values of a real matrix are convex and partly smooth.

L .
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Outline
9
® Inertial Forward-Backward.
9
K
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Inertial Forward-Backward
min F(z) + G(2)
(A.1) Fand G € I'o(R"), F € C11(R™) with 1/3-Lipschitz gradient.
(A.2) Non-empty set of minimizers.
yr  =xp+ap(Tr —TR-1), ag € [0,1]
Vi € (628 —¢€ §y? =z + b (v — Tk—1), br €0,1]
Th+1 = Prox, o (y¢ — wVF(yp))
- .
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Inertial Forward-Backward

;2]%%1711 F(x) 4+ G(x)

(A.1) Fand G € I'o(R"), F € C11(R™) with 1/3-Lipschitz gradient.

(A.2) Non-empty set of minimizers.

yy  =zp+ag(xr —zp—1), ag €[0,1]
Vi € (628 —¢€ §y? =z + b (2 — xK—1), br €0,1]
Th+1 = Prox, o (y¢ — wVF(yp))

f(:l/‘7
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;2]%11 F(x) 4+ G(x)

Inertial Forward-Backward

(A.1) Fand G € I'o(R"), F € C11(R™) with 1/3-Lipschitz gradient.

(A.2) Non-empty set of minimizers.

YL =z +ap(Tr — Tp_1), ar €10,1]
Vi € (628 —¢€ §y? =) + bp(zp — Ti—1), br €0,1]
_ b
Th+1 = Prox, o (y¢ — wVF(yp))
® PPA(F =0):
9o ap = bk =0:FB .
® b, =0: (heavy ball method if G = 0 =
)
9 ap — bk . =
N .
$ FISTA (Beck-Teboulle, Chambolle-Dossal).
® 4, €]0,5] and a, — 1 : FISTA-like
L
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B Global convergence E

Theorem Lete €]0,3[ anda < 1 b < 1. Suppose that v, € [e,28 — €|,ar €
10,al, by €]0,b], T > 0 is such that either of the following holds :

() (14 ax) — 35 (1+bx)” > 7 :foray < 35by; or
(1) (1—3ak)— B( —bk)2>7:forbk§ak I’chk<ak<bk

Then (x1) ke is asymptotically regular and converges to x* € Argmin(F + G).

1

B O <a
I Y/ (28) <a<b
0.8} a < by/(26)

06
3

04r

02r
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B Global convergence E

Theorem Lete €]0,3[ anda < 1 b < 1. Suppose that v, € [e,28 — €|,ar €
10,al, by €]0,b], T > 0 is such that either of the following holds :

() (14 ax) — 35 (1+bx)” > 7 :foray < 35by; or
(1) (1—3ak)— ﬁ( —bk)2>7:forbk§ak r”‘“bk<ak<bk

Then (x1) ke is asymptotically regular and converges to x* € Argmin(F + G).

1

B O <a
I b/(26) <a<b
0.8} a < by/(26)

06T

3

04r

02r

0 0.2 0.4 0.6 0.8 1

Theorem ( ) Suppose thatv, €]0, 5],
and take ap = by = ’,f/, s Vp > 2. Then (x1)ren IS asymptotically regular and
converges to x* € Argmin(F' + G). B
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Identification and local linear convergence

Theorem Let the iFB be used to create a sequence x;. which converges to x* €
Argmin(F + G), such that R € PS,«(M+), F is C* near z* and

—VF(zx*) €ri(0G(zx™)).

Then the following holds,

(1) The iFB has the finite identification property, i.e. x;. € M~ for k large enough. If
M~ is affine (or linear), then also y;. and y,’; e M« forlarge k.

(2) Suppose moreover there exists o > 0 such that
PrV2F(z*)Pr = ald, T :=T .

Then Vk large enough, the following holds.

(i) Q-linear convergence :if0 < v < v, <7 < min(2a5?,23), then ||zy11 — 2*||
converges (Q-linearly.

(i) R-linear convergence : if M.« is affine (or linear), then ||xx11 — x*|| converges
. R-linearly. ]
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Identification and local linear convergence

L I

The rates are expressed analytically (see ).

M« affine/linear : the rate estimate is tight.

(G locally polyhedral at ™ :

® the rate estimate is optimal.

® the restricted injectivity assumption can be removed (less sharp rate).

® with F = 1 |jy — A-|5 : explicit equation/finite termination.

Though IFB can be globally faster than FB, the situation changes locally : for
Yk E]O,ﬁ], Pk E]nk, \/7773] for ap > ng. 1

n
0.96

0.92 f
0.88 |

0.84 |

0 0.2 04 06 0.8 n 1
a
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Random convex programs

. 2 . _
min 4 [y — Azf3 +AR()  min R(z) st y=As
(Px) (BPr)

Theorem Let z* be a feasible point of (BPr) such that R € PS,.« (M) and that
ker(A)NTy = {0}, and (ATA)"e, €ri(OR(z")). (1)

Then, for A\ sufficiently small, (P,) has a unique minimizer, and the iFB applied to
solve it identifies M .~ in finite time, and then converges locally linearly.

L .
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~ .
Random convex programs
min 4 [y — Azf3 +AR()  min R(z) st y=As
(Px) (BPRr)

Theorem Let z* be a feasible point of (BPr) such that R € PS,.« (M) and that
ker(A)NTy = {0}, and (ATA)"e, €ri(OR(z")). (1)

Then, for A\ sufficiently small, (P,) has a unique minimizer, and the iFB applied to
solve it identifies M .~ in finite time, and then converges locally linearly.

Proposition (Gaussian measurements) Choose A from the standard Gaussian en-
semble (iid ~ N (0, 1) entries).

(i) R=|-|l; :lets = |x*||,- fm > 28slog(n) + s for some 3 > 1, then (1) is in
force w.o.p..

(i) R=|-|, : letr = rank(z*), z* € R"*". If m > pBr(6n — 5r) for some 3 > 1,
then (1) is in force w.o.p..

L |
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Random convex programs
min 4 [y — Azf3 +AR()  min R(z) st y=As
(Px) (BPRr)

Theorem Let z* be a feasible point of (BPr) such that R € PS,.« (M) and that
ker(A)NTy = {0}, and (ATA)"e, €ri(OR(z")). (1)

Then, for A\ sufficiently small, (P,) has a unique minimizer, and the iFB applied to
solve it identifies M .~ in finite time, and then converges locally linearly.

Proposition (Gaussian measurements) Choose A from the standard Gaussian en-
semble (iid ~ N (0, 1) entries).

(i) R=|-|l; :lets = |x*||,- fm > 28slog(n) + s for some 3 > 1, then (1) is in
force w.o.p..

(i) R=|-|, : letr = rank(z*), z* € R"*". If m > pBr(6n — 5r) for some 3 > 1,
then (1) is in force w.o.p..

L m > C dim(T,+ )polylog(n) |
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Styllzed appllcatlons
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Outline

9
9
® Douglas-Rachford.

9

]
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Douglas-Rachford

;211@1}% F(x) 4+ G(x)

(A.1) Fand G € T'g(R"™), ri (dom(F')) Nri(dom(G)) # 0.

(A.2) Non-empty set of minimizers.

Vk+1 = ProX.q (2m) — 2k)
Primal form 241 = (1 — )\k)zk + Ak (Zk + V41 — azk) ;

; Lk+1 = PIOX, p 2k41,
Y >

oy E]O, 2], Z )\k(2 — )\k) = 400
keN

Uk+1 = PIOXg+/, (22 — 21) /),

A primal-dual form Zht1 = (1 — )\k)Zlc + Ak (lek — Wuk+1) 7

Tkt1 = ProX,p (2k+1) -

L .
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B : : : B
Identification and local linear convergence

Theorem Suppose that DR is used to create a sequence (xy,ui) which converges
to a primal-dual Kuhn-Tucker pair (z*,u*) such that F € PS,.(MZL,) and G* ¢
PSS+ (ME)), and

—u* €ri(0F(x*)) and z* €ri(0G*(u”)).
(1) The DR scheme has the finite activity identification property, i.e. Vk large enough,
(.ka,Uk) c Mg* X M?Cj**

(2) Suppose furthermore that \i. = 1 and F' is locally polyhedral around x*. Denote
ok
dk — ! (Uk Y )> . Then,

Tr_1— T

(i) Q-linear convergence : given any p such that1 > p > sin 0 (T%,

G*
xr*o Tu* )’ we
have

ldiall < plldill and [z, — "] = O(p") .

(i) R-linear convergence : if M« is affine/linear, then

[disa | < sin0p(TE,TE ) [diga ]| and ||z — =¥ = O (sin* 0p(TL, TE))

L .
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B : : : B
Identification and local linear convergence

Theorem Suppose that DR is used to create a sequence (xy,ui) which converges
to a primal-dual Kuhn-Tucker pair (z*,u*) such that F € PS,.(MZL,) and G* ¢
PSS+ (ME)), and

—u* €ri(0F(x*)) and z* €ri(0G*(u”)).
(1) The DR scheme has the finite activity identification property, i.e. Vk large enough,
(.ka,Uk) c Mg* X M?Cj**

(2) Suppose furthermore that \i. = 1 and F' is locally polyhedral around x*. Denote
ok
dk — ! (Uk Y )> . Then,

Tr_1— T

(i) Q-linear convergence : given any p such that1 > p > sin 0 (T%,

G*
xr*o Tu* )’ we
have

ldiall < plldill and [z, — "] = O(p") .

(i) R-linear convergence : if M« is affine/linear, then

[disa | < sin0p(TE,TE ) [diga ]| and ||z — =¥ = O (sin* 0p(TL, TE))

| The Friedrichs angle (U, V) is the dim(U N V') + 1 principal angle ]
and 0p(U,V) > 0 TerryFest'15-22



B : : : B
Identification and local linear convergence

L J

If G* is also locally polyhedral at =* : the rate estimate is optimal.
Encompasses some previous results ,
(in finite dimension),
Extends readily to the case of more than two functions with the product space
trick .
Extends easily to ADMM (DR on the dual).

]
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Affine constrained problems B

min G(x) s.t. y=Ax (BPR)
rER™
Theorem Suppose that DR is used to create a sequence (xy, uy) that converges to

(z*,u*) such that G* € PS,«(ME.) and
z* € (ATy + ker(A)) Nri (0G*(u*)) . (1)

Then, u; € /\/lf** for k large enough, and DR converges locally linearly with rate
given by cos O (ker(A), SG ), SE = ngi“.

L .
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Stylized applications
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Outline

Conclusion and future work.
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-
Take away messages

Finite activity identification and local linear convergence of
proximal splitting algorithms.

Explains the behaviour typically observed in many
applications.

The key: partial smoothness (a powerful framework for local
convergence analysis).

Many other splitting algorithms.

Beyond convexity.
Beyond non-degeneracy (polyhedral case and stratification).
Infinite dimensional case.

]
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Preprints on arxiv and papers on

https://fadili.users.greyc.fr/

Thanks
Any questions ?

L |
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