Finite Identification and Local Linear Convergence of Proximal Splitting Algorithms

Jalal Fadili

Normandie Université-ENSICAEN, GREYC CNRS UMR 6072

Joint work with

Jingwei Liang, Gabriel Peyré and Russell Luke

TerryFest, Limoges 2015

Class of problems: motivations

Class of problems: motivations

 x_0 typically lives in a low-dimensional manifold

Class of problems: motivations

- Many applications: signal/image processing, machine learning, statistics, etc..
- Solve an inverse problem through regularization :

$$F \text{ and } G \in \Gamma_0(\mathbb{R}^n) \qquad \min_{x \in \mathbb{R}^n} \ \underbrace{F(x)}_{\text{Data fidelity}} + \underbrace{G(x)}_{\text{Regularization, constraints}}$$

 $lackbox{ iny -} G$ promotes objects living in the same manifold as x_0 .

TerryFest'15-3

$$\min_{x \in \mathbb{R}^n} F(x) + G(x) \qquad F \text{ and } G \in \Gamma_0(\mathbb{R}^n)$$

Low-complexity \iff Low-dimensional manifold

$$\min_{x \in \mathbb{R}^n} F(x) + G(x) \qquad F \text{ and } G \in \Gamma_0(\mathbb{R}^n)$$

Low-complexity \iff Low-dimensional manifold

Sparse vectors

$$\min_{x \in \mathbb{R}^n} F(x) + G(x) \qquad F \text{ and } G \in \Gamma_0(\mathbb{R}^n)$$

Low-complexity \iff Low-dimensional manifold

Sparse vectors

$$G(x) = \|x\|_1$$
 (tightest convex relaxation of ℓ_0)

$$\min_{x \in \mathbb{R}^n} F(x) + G(x) \qquad F \text{ and } G \in \Gamma_0(\mathbb{R}^n)$$

Low-complexity \iff Low-dimensional manifold

Sparse vectors

$$G(x) = \|x\|_1$$
 (tightest convex relaxation of ℓ_0)

Low-rank matrices

$$\min_{x \in \mathbb{R}^n} F(x) + G(x) \qquad F \text{ and } G \in \Gamma_0(\mathbb{R}^n)$$

Low-complexity \iff Low-dimensional manifold

Sparse vectors

$$G(x) = \|x\|_1$$
 (tightest convex relaxation of ℓ_0)

Low-rank matrices

(tightest convex relaxation of rank)

Proximal splitting and local linear convergence

(Inertial) Forward-Backward

Trace LASSO $\min_{x \in \mathbb{R}^{n \times n}} \frac{1}{2} \|y - \mathcal{A}(x)\|_2^2 + \lambda \|x\|_*$ 10^2 10^6 FB practical FB theoretical iFB practical iFB practical iFB theoretical iFB theoretical iFB theoretical iFB theoretical iFB theoretical iFB theoretical iFISTA practical iFISTA practical iFISTA practical if FISTA practical if FISTA

Douglas-Rachford

60

80

100 120 140 160

Proximal splitting and local linear convergence

- In all examples, G (and possibly F) enjoy rich structure : **partial smoothness** (TBD shortly).
- The rationale behind observed behaviour :
 - Finite activity identification.
 - Linearization of the implicit steps.
 - Matrix recurrence and rates through sharp spectral analysis.

Outline

- Partial smoothness.
- Inertial Forward-Backward.
- Douglas-Rachford.
- Conclusion and future work.

Outline

- Partial smoothness.
- Inertial Forward-Backward.
- Douglas-Rachford.
- Conclusion and future work.

Partly smooth functions

- ullet A partly smooth function [Lewis 2002] behaves smoothly along a manifold \mathcal{M} , and sharply normal to it.
- The behaviour of the function and its minimizers (or critical points) depend essentially on its restriction to \mathcal{M} .
- Offering a powerful framework for sensitivity analysis and activity identification.

Partly smooth functions

Definition Let $R \in \Gamma_0(\mathbb{R}^n)$. R is partly smooth at x relative to a set $\mathcal{M} \ni x$, i.e. $R \in \mathrm{PS}_x(\mathcal{M})$, if

- (i) (Smoothness) \mathcal{M} is a C^2 -manifold around x and R restricted to \mathcal{M} is C^2 around x.
- (ii) (Sharpness) The tangent space $T_x(\mathcal{M}) = T_x := par(\partial R(x))^{\perp}$.
- (iii) (Continuity) The set-valued mapping ∂R is continuous at x relative to \mathcal{M} .

Examples

$$\mathcal{M} = T_x = \{ u \in \mathbb{R}^N ; \operatorname{supp}(u) \subseteq \operatorname{supp}(x) \}.$$

$$\mathcal{M} = T_x = \{u ; \operatorname{supp}_{\mathcal{B}}(u) \subseteq \operatorname{supp}_{\mathcal{B}}(x)\}$$

 $\operatorname{supp}_{\mathcal{B}}(x) = \bigcup \{b ; x_b \neq 0\}.$

$$\mathcal{M} = \{u ; \operatorname{rank}(u) = \operatorname{rank}(x)\}.$$

$$\mathcal{M} = T_x = \{ u \in \mathbb{R}^N : u_I \propto \text{sign}(x_I) \}$$

 $I = \{ i : |x_i| = ||x||_{\infty} \}.$

Calculus rules

Proposition ([Lewis 2002, Daniilidis et al. 2014])

Sum and pre-composition: The set of continuous convex partly smooth functions is closed under addition and pre-composition by a linear operator (under a mild transversality condition).

Calculus rules

Proposition ([Lewis 2002, Daniilidis et al. 2014])

- **Sum and pre-composition**: The set of continuous convex partly smooth functions is closed under addition and pre-composition by a linear operator (under a mild transversality condition).
- Smooth perturbation: If a function is partly smooth function, then so is its smooth perturbation.

Calculus rules

Proposition ([Lewis 2002, Daniilidis et al. 2014])

- **Sum and pre-composition**: The set of continuous convex partly smooth functions is closed under addition and pre-composition by a linear operator (under a mild transversality condition).
- Smooth perturbation: If a function is partly smooth function, then so is its smooth perturbation.
- Spectral lift: Absolutely permutation-invariant convex and partly smooth functions of the singular values of a real matrix are convex and partly smooth.

Outline

- Partial smoothness.
- Inertial Forward-Backward.
- Douglas-Rachford.
- Conclusion and future work.

Inertial Forward-Backward

$$\min_{x \in \mathbb{R}^n} F(x) + G(x)$$

- (A.1) F and $G \in \Gamma_0(\mathbb{R}^n)$, $F \in C^{1,1}(\mathbb{R}^n)$ with $1/\beta$ -Lipschitz gradient.
- (A.2) Non-empty set of minimizers.

$$\gamma_{k} \in [\epsilon, 2\beta - \epsilon] \begin{cases} y_{k}^{a} &= x_{k} + a_{k}(x_{k} - x_{k-1}), \quad a_{k} \in [0, 1] \\ y_{k}^{b} &= x_{k} + b_{k}(x_{k} - x_{k-1}), \quad b_{k} \in [0, 1] \\ x_{k+1} &= \operatorname{prox}_{\gamma_{k} G} \left(y_{k}^{a} - \gamma_{k} \nabla F(y_{k}^{b}) \right) \end{cases}$$

Inertial Forward-Backward

$$\min_{x \in \mathbb{R}^n} F(x) + G(x)$$

- (A.1) F and $G \in \Gamma_0(\mathbb{R}^n)$, $F \in C^{1,1}(\mathbb{R}^n)$ with $1/\beta$ -Lipschitz gradient.
- (A.2) Non-empty set of minimizers.

$$\gamma_{k} \in [\epsilon, 2\beta - \epsilon] \begin{cases} y_{k}^{a} &= x_{k} + a_{k}(x_{k} - x_{k-1}), \quad a_{k} \in [0, 1] \\ y_{k}^{b} &= x_{k} + b_{k}(x_{k} - x_{k-1}), \quad b_{k} \in [0, 1] \\ x_{k+1} &= \operatorname{prox}_{\gamma_{k} G} \left(y_{k}^{a} - \gamma_{k} \nabla F(y_{k}^{b}) \right) \end{cases}$$

Inertial Forward-Backward

$$\min_{x \in \mathbb{R}^n} F(x) + G(x)$$

- (A.1) F and $G \in \Gamma_0(\mathbb{R}^n)$, $F \in C^{1,1}(\mathbb{R}^n)$ with $1/\beta$ -Lipschitz gradient.
- (A.2) Non-empty set of minimizers.

$$\gamma_{k} \in [\epsilon, 2\beta - \epsilon] \begin{cases} y_{k}^{a} &= x_{k} + a_{k}(x_{k} - x_{k-1}), \quad a_{k} \in [0, 1] \\ y_{k}^{b} &= x_{k} + b_{k}(x_{k} - x_{k-1}), \quad b_{k} \in [0, 1] \\ x_{k+1} &= \operatorname{prox}_{\gamma_{k} G} \left(y_{k}^{a} - \gamma_{k} \nabla F(y_{k}^{b}) \right) \end{cases}$$

- \blacksquare PPA (F=0): [Alvarez and Attouch 2001].
- \bullet $a_k = b_k = 0$: FB [Lions and Mercier 1979].
- $m{m{D}}_k = 0$: [Moudafi and Oliny 2003] (heavy ball method if G = 0 [Attouch et al. 2000]).
- - [Lorenz and Pock 2014].
 - FISTA (Beck-Teboulle, Chambolle-Dossal).
 - $\gamma_k \in]0, \beta]$ and $a_k \to 1$: FISTA-like [Beck and Teboulle 2009, Chambolle and Dossal 2015].

Global convergence

Theorem Let $\epsilon \in]0, \beta[$ and $\bar{a} < 1$ $\bar{b} < 1$. Suppose that $\gamma_k \in [\epsilon, 2\beta - \epsilon]$, $a_k \in]0, \bar{a}], b_k \in]0, \bar{b}], \tau > 0$ is such that either of the following holds:

(i)
$$(1+a_k)-rac{\gamma_k}{2eta}\left(1+b_k
ight)^2> au$$
 : for $a_k<rac{\gamma_k}{2eta}b_k$; or

(ii)
$$(1-3a_k)-rac{\gamma_k}{2eta}\left(1-b_k
ight)^2> au$$
 : for $b_k\leq a_k$ or $rac{\gamma_k}{2eta}b_k\leq a_k< b_k$.

Then $(x_k)_{k\in\mathbb{N}}$ is asymptotically regular and converges to $x^* \in \operatorname{Argmin}(F+G)$.

Global convergence

Theorem Let $\epsilon \in]0, \beta[$ and $\bar{a} < 1$ $\bar{b} < 1$. Suppose that $\gamma_k \in [\epsilon, 2\beta - \epsilon]$, $a_k \in]0, \bar{a}], b_k \in]0, \bar{b}], \tau > 0$ is such that either of the following holds:

(i)
$$(1+a_k)-rac{\gamma_k}{2eta}\left(1+b_k
ight)^2> au$$
 ; for $a_k<rac{\gamma_k}{2eta}b_k$; or

(ii)
$$(1-3a_k)-\frac{\gamma_k}{2\beta}\left(1-b_k\right)^2> au$$
 : for $b_k\leq a_k$ or $\frac{\gamma_k}{2\beta}b_k\leq a_k< b_k$.

Then $(x_k)_{k\in\mathbb{N}}$ is asymptotically regular and converges to $x^* \in \operatorname{Argmin}(F+G)$.

Theorem ([Chambolle and Dossal 2015, Attouch's talk]) Suppose that $\gamma_k \in]0,\beta]$, and take $a_k = b_k = \frac{k-1}{k+p}$, $\forall p > 2$. Then $(x_k)_{k \in \mathbb{N}}$ is asymptotically regular and converges to $x^* \in \operatorname{Argmin}(F+G)$.

Theorem Let the iFB be used to create a sequence x_k which converges to $x^* \in Argmin(F+G)$, such that $R \in PS_{x^*}(\mathcal{M}_{x^*})$, F is C^2 near x^* and

$$-\nabla F(x^*) \in \operatorname{ri}(\partial G(x^*)).$$

Then the following holds,

- (1) The iFB has the finite identification property, i.e. $x_k \in \mathcal{M}_{x^*}$ for k large enough. If \mathcal{M}_{x^*} is affine (or linear), then also y_k^a and $y_k^b \in \mathcal{M}_{x^*}$ for large k.
- (2) Suppose moreover there exists $\alpha \geq 0$ such that

$$P_T \nabla^2 F(x^*) P_T \succ \alpha \mathrm{Id}, \qquad T := T_{x^*}.$$

Then $\forall k$ large enough, the following holds.

- (i) Q-linear convergence : if $0 < \underline{\gamma} \le \gamma_k \le \overline{\gamma} < \min(2\alpha\beta^2, 2\beta)$, then $||x_{k+1} x^*||$ converges Q-linearly.
- (ii) R-linear convergence : if \mathcal{M}_{x^*} is affine (or linear), then $||x_{k+1} x^*||$ converges R-linearly.

- The rates are expressed analytically (see [Liang, Fadili and Peyré 2015]).
- $m M_{x^\star}$ affine/linear : the rate estimate is tight.
- lacksquare G locally polyhedral at x^\star :
 - the rate estimate is optimal.
 - the restricted injectivity assumption can be removed (less sharp rate).
 - with $F = \frac{1}{2} \|y A \cdot\|_2^2$: explicit equation/finite termination.
- Though iFB can be globally faster than FB, the situation changes locally: for

 $\gamma_k \in]0,\beta], \rho_k \in]\eta_k,\sqrt{\eta_k}] \text{ for } a_k > \eta_k.$

Random convex programs

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} \|y - Ax\|_2^2 + \lambda R(x) \qquad \min_{x \in \mathbb{R}^n} R(x) \quad \text{s.t.} \quad y = Ax$$

$$(\mathsf{P}_\lambda) \qquad \qquad (\mathsf{BP}_\mathsf{R})$$

Theorem Let x^* be a feasible point of (BP_R) such that $R \in PS_{x^*}(\mathcal{M}_{x^*})$ and that

$$\ker(\mathbf{A}) \cap T_{x^*} = \{0\}, \quad \text{and} \quad (\mathbf{A}_T^+ \mathbf{A})^* e_{x^*} \in \operatorname{ri}(\partial R(x^*)). \tag{1}$$

Then, for λ sufficiently small, (P_{λ}) has a unique minimizer, and the iFB applied to solve it identifies $\mathcal{M}_{x^{\star}}$ in finite time, and then converges locally linearly.

Random convex programs

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} \|y - Ax\|_2^2 + \lambda R(x) \qquad \min_{x \in \mathbb{R}^n} R(x) \quad \text{s.t.} \quad y = Ax$$

$$(\mathsf{P}_\lambda) \qquad \qquad (\mathsf{BP}_\mathsf{R})$$

Theorem Let x^* be a feasible point of (BP_R) such that $R \in PS_{x^*}(\mathcal{M}_{x^*})$ and that

$$\ker(\mathbf{A}) \cap T_{x^*} = \{0\}, \quad \text{and} \quad (\mathbf{A}_T^+ \mathbf{A})^* e_{x^*} \in \operatorname{ri}(\partial R(x^*)). \tag{1}$$

Then, for λ sufficiently small, (P_{λ}) has a unique minimizer, and the iFB applied to solve it identifies $\mathcal{M}_{x^{\star}}$ in finite time, and then converges locally linearly.

- **Proposition (Gaussian measurements)** Choose A from the standard Gaussian ensemble (iid $\sim \mathcal{N}(0,1)$ entries).
 - (i) $R = \|\cdot\|_1$: let $s = \|x^*\|_0$. If $m > 2\beta s \log(n) + s$ for some $\beta > 1$, then (1) is in force w.o.p..
 - (ii) $R = \|\cdot\|_*$: let $r = \operatorname{rank}(x^*)$, $x^* \in \mathbb{R}^{n \times n}$. If $m \ge \beta r(6n 5r)$ for some $\beta > 1$, then (1) is in force w.o.p..

Random convex programs

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} \|y - Ax\|_2^2 + \lambda R(x) \qquad \min_{x \in \mathbb{R}^n} R(x) \quad \text{s.t.} \quad y = Ax$$

$$(\mathsf{P}_\lambda) \qquad \qquad (\mathsf{BP}_\mathsf{R})$$

Theorem Let x^* be a feasible point of (BP_R) such that $R \in PS_{x^*}(\mathcal{M}_{x^*})$ and that

$$\ker(\mathbf{A}) \cap T_{x^*} = \{0\}, \quad \text{and} \quad (\mathbf{A}_T^+ \mathbf{A})^* e_{x^*} \in \operatorname{ri}(\partial R(x^*)). \tag{1}$$

Then, for λ sufficiently small, (P_{λ}) has a unique minimizer, and the iFB applied to solve it identifies $\mathcal{M}_{x^{\star}}$ in finite time, and then converges locally linearly.

Proposition (Gaussian measurements) Choose A from the standard Gaussian ensemble (iid $\sim \mathcal{N}(0,1)$ entries).

- (i) $R = \|\cdot\|_1$: let $s = \|x^*\|_0$. If $m > 2\beta s \log(n) + s$ for some $\beta > 1$, then (1) is in force w.o.p..
- (ii) $R = \|\cdot\|_*$: let $r = \operatorname{rank}(x^*)$, $x^* \in \mathbb{R}^{n \times n}$. If $m \ge \beta r(6n 5r)$ for some $\beta > 1$, then (1) is in force w.o.p..

$$m \geq C \dim(T_{x^*}) \operatorname{polylog}(n)$$

Stylized applications

 $\min_{x \in \mathbb{R}^n} \frac{1}{2} \|y - Ax\|_2^2 + \lambda R(x)$ ℓ_{∞}

Nuclear norm

TerryFest'15-19

Outline

- Partial smoothness.
- Inertial Forward-Backward.
- Douglas-Rachford.
- Conclusion and future work.

Douglas-Rachford

$$\min_{x \in \mathbb{R}^n} F(x) + G(x)$$

- (A.1) F and $G \in \Gamma_0(\mathbb{R}^n)$, $\operatorname{ri}(\operatorname{dom}(F)) \cap \operatorname{ri}(\operatorname{dom}(G)) \neq \emptyset$.
- (A.2) Non-empty set of minimizers.

Primal form
$$\begin{cases} v_{k+1} = \operatorname{prox}_{\gamma G}\left(2x_k - z_k\right),\\ z_{k+1} = (1-\lambda_k)z_k + \lambda_k\left(z_k + v_{k+1} - x_k\right),\\ x_{k+1} = \operatorname{prox}_{\gamma F} z_{k+1}, \end{cases}$$

$$\gamma > 0$$

$$\lambda_k \in]0, 2], \sum_{k \in \mathbb{N}} \lambda_k (2 - \lambda_k) = +\infty$$

$$\begin{cases} u_{k+1} = \operatorname{prox}_{G^*/\gamma}\left(\left(2x_k - z_k\right)/\gamma\right), \\ z_{k+1} = \left(1 - \lambda_k\right)z_k + \lambda_k\left(x_k - \gamma u_{k+1}\right), \\ x_{k+1} = \operatorname{prox}_{\gamma F}\left(z_{k+1}\right). \end{cases}$$

Theorem Suppose that DR is used to create a sequence (x_k, u_k) which converges to a primal-dual Kuhn-Tucker pair (x^*, u^*) such that $F \in \mathrm{PS}_{x^*}(\mathcal{M}^F_{x^*})$ and $G^* \in \mathrm{PS}_{u^*}(\mathcal{M}^{G^*}_{u^*})$, and

$$-u^* \in \operatorname{ri}(\partial F(x^*))$$
 and $x^* \in \operatorname{ri}(\partial G^*(u^*))$.

- (1) The DR scheme has the finite activity identification property, i.e. $\forall k$ large enough, $(x_k, u_k) \in \mathcal{M}_{x^*}^F \times \mathcal{M}_{u^*}^{G^*}$.
- (2) Suppose furthermore that $\lambda_k \equiv 1$ and F is locally polyhedral around x^\star . Denote $d_k = \begin{pmatrix} \gamma \left(u_k u^\star \right) \\ x_{k-1} x^\star \end{pmatrix}$. Then,
 - (i) Q-linear convergence : given any ρ such that $1>\rho>\sin\theta_F(T_{x^\star}^F,T_{u^\star}^{G^*})$, we have

$$||d_{k+1}|| \le \rho ||d_k||$$
 and $||z_k - z^*|| = O(\rho^k)$.

(ii) R-linear convergence : if \mathcal{M}_{x^*} is affine/linear, then

$$||d_{k+1}|| \le \sin \theta_F(T_{x^*}^F, T_{u^*}^{G^*}) ||d_{k+1}|| \quad \text{and} \quad ||z_k - z^*|| = O\left(\sin^k \theta_F(T_{x^*}^F, T_{u^*}^{G^*})\right).$$

Theorem Suppose that DR is used to create a sequence (x_k, u_k) which converges to a primal-dual Kuhn-Tucker pair (x^*, u^*) such that $F \in \mathrm{PS}_{x^*}(\mathcal{M}_{x^*}^F)$ and $G^* \in \mathrm{PS}_{u^*}(\mathcal{M}_{u^*}^{G^*})$, and

$$-u^* \in \operatorname{ri}(\partial F(x^*))$$
 and $x^* \in \operatorname{ri}(\partial G^*(u^*))$.

- (1) The DR scheme has the finite activity identification property, i.e. $\forall k$ large enough, $(x_k, u_k) \in \mathcal{M}_{x^*}^F \times \mathcal{M}_{u^*}^{G^*}$.
- (2) Suppose furthermore that $\lambda_k \equiv 1$ and F is locally polyhedral around x^\star . Denote $d_k = \begin{pmatrix} \gamma \, (u_k u^\star) \\ x_{k-1} x^\star \end{pmatrix}$. Then,
 - (i) Q-linear convergence : given any ρ such that $1>\rho>\sin\theta_F(T_{x^\star}^F,T_{u^\star}^{G^*})$, we have

$$||d_{k+1}|| \le \rho ||d_k||$$
 and $||z_k - z^*|| = O(\rho^k)$.

(ii) R-linear convergence : if \mathcal{M}_{x^*} is affine/linear, then

$$||d_{k+1}|| \le \sin \theta_F(T_{x^*}^F, T_{u^*}^{G^*}) ||d_{k+1}|| \quad \text{and} \quad ||z_k - z^*|| = O\left(\sin^k \theta_F(T_{x^*}^F, T_{u^*}^{G^*})\right).$$

The Friedrichs angle $\theta_F(U,V)$ is the $\dim(U\cap V)+1$ principal angle [Bauschke et al. 2014]. and $\theta_F(U,V)>0$

- If G^* is also locally polyhedral at x^* : the rate estimate is optimal.
- Encompasses some previous results [Demanet and Zhang 2013], [Bauschke et al. 2013, 2014] (in finite dimension), [Boley et al. 2014].
- Extends readily to the case of more than two functions with the product space trick [Liang, Fadili, Peyré and Luke 2015].
- Extends easily to ADMM (DR on the dual).

Affine constrained problems

$$\min_{x \in \mathbb{R}^n} G(x) \quad \text{s.t.} \quad y = Ax \tag{BP_R}$$

Theorem Suppose that DR is used to create a sequence (x_k, u_k) that converges to (x^*, u^*) such that $G^* \in PS_{u^*}(\mathcal{M}_{u^*}^{G^*})$ and

$$x^* \in (A^+y + \ker(A)) \cap \operatorname{ri}(\partial G^*(u^*))$$
 (1)

Then, $u_k \in \mathcal{M}_{u^*}^{G^*}$ for k large enough, and DR converges locally linearly with rate given by $\cos \theta_F(\ker(A), S_{u^*}^{G^*})$, $S_{u^*}^{G^*} = T_{u^*}^{G^*}$.

Stylized applications

Outline

- Partial smoothness.
- Inertial Forward-Backward.
- Douglas-Rachford.
- Conclusion and future work.

Take away messages

- Finite activity identification and local linear convergence of proximal splitting algorithms.
- Explains the behaviour typically observed in many applications.
- The key: partial smoothness (a powerful framework for local convergence analysis).
- Many other splitting algorithms.
- Beyond convexity.
- Beyond non-degeneracy (polyhedral case and stratification).
- Infinite dimensional case.

Preprints on arxiv and papers on

https://fadili.users.greyc.fr/

Thanks Any questions?