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Conjugate Duality and Optimal Control

1. Pair a generalized problem of Bolza

min l(x(0), x(T )) +

Z T

0
L (x(t), ẋ(t)) dt,

where L, l : R2n ! (�1,1] are convex with

min l⇤(p(0),�p(T )) +

Z T

0
L⇤ (ṗ(t), p(t)) dt.

2. The (maximized) Hamiltonian

H(x , p) = sup
v2Rn

{v · p � L(x , v)} .

is convex in p (as usual) and concave in x .

3. Optimal control problems with linear dynamics and convex penalties (Linear-Convex
Regulator) and dual optimal control problems with dual linear dynamics:
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Obtain: existence and regularity of minimizers, necessary and su�cient Hamiltonian optimality
conditions, conjugacy and Hamilton-Jacobi characterization of primal and dual value functions,
regularity of the optimal value functions and of the optimal feedback, etc.
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Lyapunov inequalities for dual linear di↵erential inclusions.
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An elementary observation

Let f : Rn ! [0,1) be homogeneous of degree 2. Let A be a n ⇥ n matrix. Let � > 0. If

f (Ax)  �f (x) 8x 2 Rn

then

f ⇤(AT p) = sup
x2Rn

n

x · AT p � f (x)
o

 sup
x2Rn

⇢

x · AT p �
1

�
f (Ax)

�

= sup
x2Rn

⇢

Ax · p �
1

�
f (Ax)

�

 sup
x2Rn

⇢

x · p �
1

�
f (x)

�

= � sup
x2Rn

⇢

x

�
· p � f

„

x

�

«�

= �f ⇤(p)

Hence,
f ⇤(AT p)  �f ⇤(p) 8p 2 Rn.
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An elementary observation

In summary, if f : Rn ! [0,1) is convex and homogeneous of degree 2, then

f (Ax)  �f (x) 8x 2 Rn () f

⇤(AT
p)  �f

⇤(p) 8p 2 Rn.

Similarly, subject to further positive-definiteness and di↵erentiability assumption,

rf (x) · Ax < 0 8x 6= 0 () rf

⇤(p) · AT
p < 0 8p 6= 0

follows from rf , rf

⇤ being inverses of one another.
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Background on linear di↵erential inclusions

ẋ = Ax asymptotically stable () ṗ = AT p asymptotically stable

ẋ = Ax asymptotically stable () there exists P = PT > 0 so that PA + AT P < ��P.
The general problem of the stability of motion, Lyapunov, 78 B.C.A.

Asymptotic stability for arbitrary switching between ẋ = Aix () asymptotic stability
for linear di↵erential inclusion

ẋ 2 conv {A1x , A2x , . . . , Amx} (1)

Asymptotic stability for every ẋ = Aix does NOT imply it for (1).

Asymptotic stability for (1) () exists a convex and smooth Lyapunov function:

rV (x) · v  ��V (x) 8v 2 conv {A1x , A2x , . . . , Amx} .

Criteria of asymptotic stability of di↵erential and di↵erence inclusions ..., Molchanov, Pyatnitskiy, 17 A.C.A.

A converse Lyapunov theorem for a class of dynamical systems which undergo switching, Dayawansa, Martin, 29 A.C.A.

Asymptotic stability for (1) () asymptotic stability for

ṗ 2 conv

n

AT
1 p, AT

2 p, . . . , AT
mp

o

(2)

Stability of inclusions of linear type, Barabanov, 25 A.C.A.
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ẋ = Ax asymptotically stable () ṗ = AT p asymptotically stable
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Duality of convex Lyapunov functions

Theorem (G. et al 06)

Suppose V , V ⇤ : Rn ! R are convex, di↵erentiable, positive definite, and positively
homogeneous of degree 2. Then the following are equivalent:

V is a Lyapunov function for the linear di↵erential inclusion (1).

V ⇤ is a Lyapunov function for the dual linear di↵erential inclusion (2).

Conjugate convex Lyapunov functions for dual linear di↵erential inclusions, G. et al., IEEE TAC, 06

Note:

Extends to V , V ⇤ homogeneous of degree p, q, where 1/p + 1/q = 1.

Extends to V , V ⇤ homogeneous of degree 1, through polarity.

Carries over to discrete time.

If needed, both V and V ⇤ can be simultaneously smoothed.

Theorem (G. 00)

If V : Rn ! [0,1) is proper, lsc, convex, then

V�(x) = (1� �)2e�V (x) +
�

2
kxk2, where e�V (x) = inf

y2Rn

⇢
V (y) +

1

2�
ky � xk2

�

is di↵erentiable, V� ! V as � & 0, and (V�)⇤ =
`
V⇤

´
�.

Self-dual smoothing of convex and saddle functions , G., JCA, 08
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Lyapunov inequalities for convex processes.
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Background on linear systems and convex processes

The linear control system

ẋ = Ax + Bu

is controllable (stabilizable).

()
The linear system

ṗ = AT p, q = BT p.

is observable (detectable).

How about (nonnegativity, conical) constraints?
Early work on positive controls.

Controllability in linear autonomous systems with positive controllers, Brammer 72

Global controllability of linear systems with positive controls, Saperstone 73

Convex processes!
Controllability of convex processes, Aubin, Frankowska, Olech 86

Crash course (for details, consult Convex Analysis, Rockafellar, 70):
Convex process: set-valued mapping the graph of which is a convex cone.
The adjoint process F⇤ of a convex process F is:

(p, w) 2 gphF⇤ ⌘ (�w , p) 2 (gphF )⇤

Example:

F (x) =

⇢

Ax + K if x 2 X
; if x 62 X

F⇤(p) =

⇢

AT p � X⇤ if p 2 K⇤

; if p 62 K⇤
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Conjugacy of Lyapunov functions for convex processes

Theorem (G. 13)

Let V , V ⇤ : Rn ! R be convex, di↵erentiable, positive definite, and positively homogeneous of
degree 2. Suppose that the convex process F : Rn ◆ Rn is strict and closed. Let � > 0. TFAE:

V is a weak Lyapunov function for ẋ 2 F (x):

8x 2 Rn 9v 2 F (x) rV (x) · v  ��V (x).

V ⇤ is a Lypaunov function for ṗ 2 F⇤(p):

8p 2 domF⇤ 8w 2 F⇤(p) rV ⇤(p) · w  ��V ⇤(p).

Lyapunov functions and duality for convex processes, G., SICON, 13

Note:

Weak Lyapunov function:

V (x) = min

⇢

Z 1

0
k�k2 + k�̇k2 dt | �(0) = x , �̇ 2 F (�)

�

.

Carries over to discrete time.

If needed, both V and V ⇤ can be simultaneously smoothed.

Rafal Goebel Duality for convex processes



Asymptotic controllabilty and detectability under constraints

Let A, B be matrices and U a closed convex cone. The following are equivalent:

The linear system
ẋ = Ax + Bu (3)

is asymptotically controllable with controls u 2 U.

The dual linear system
ṗ = AT p, q = BT p (4)

is detectable through output q 2 U⇤.

Follows from Introduction to the theory of di↵erential inclusions, Smirnov, 06.

Corollary (G. 14)

If V , V ⇤ : Rn ! R are convex, di↵erentiable, positive definite, and positively homogeneous of
degree 2, then the following are equivalent:

V is a control Lyapunov function for (3) with the control constraint u 2 U,

V ⇤ is a Lypaunov function verifying detectability of (4) through U⇤.

Linear systems with conical constraints and convex Lyapunov functions in the framework of convex processes, G., IEEE CDC, 14
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Dissipativity inequalities with convex storage and saddle supply functions.
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Conjugacy of saddle functions

Crash course (for details, consult Convex Analysis, Rockafellar, 70):

For a proper closed saddle function h : Rm ⇥ Rn ! [�1,1] (convex in first variable,
concave in second), the saddle conjugate class [h⇤] consists of proper closed saddle
functions between

h⇤(p, q) = sup
x2Rn

inf
y2Rm

{p · x + q · y � h(x , y)}

h⇤(p, q) = inf
y2Rm

sup
x2Rn

{p · x + q · y � h(x , y)}

([h⇤])⇤ = [h]

Example: for Q = QT � 0, R = RT � 0 and any S , if

h(x , y) =
1

2
x · Qx �

1

2
y · Ry + x · Sy

and M =

»

Q S
ST �R

–

is invertible then h⇤(p, q) =
1

2

»

p
q

–T

M�1
»

p
q

–

In particular:

„

1

2
x2 �

1

2
y2

«⇤
=

1

2
p2 �

1

2
q2, (xy)⇤ = pq.
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Convex storage and saddle supply functions

Theorem (G. et al 04)

Let A, B, C, D be matrices. Let V , V ⇤ : Rn ! R be convex, positive definite, and
homogeneous of degree 2. Let h, h⇤ be saddle functions, homogeneous of degree 2. TFAE:

(a) for all x, d,
@V (x) · (Ax + Bd)  ��V (x)� h(Cx + Dd , d), (5)

(b) for all p, w,

@V ⇤(p) · (AT p + CT w)  ��V ⇤(p) + h⇤(w ,�BT p � DT w). (6)

Dissipativity for dual linear di↵erential inclusions through conjugate storage functions, G. et al., IEEE CDC, 04

Inequalities (5), (6) characterize dissipativity properties of linear di↵erential inclusions and their duals:

»
ẋ
y

–
= conv

⇢»
A B
C D

–

i

�m

i=1

»
x
d

– »
⇠̇
z

–
= conv

("
AT CT

BT DT

#

i

)m

i=1

»
⇠
w

–
.

h(c, d) = �c · d relates to passivity, h(c, d) = c2 � d2 relates to finite L2-gain, etc.

h(c, d) = ��0(d), h⇤(w, z) = �0(w) turns (5), (6) to Lyapunov inequalities.
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Summary: convex analysis and convex and saddle conjugacy ...

are useful in control systems theory beyond optimal control

How about variational analysis?

Variational and Convex Analysis Techniques for Problems Involving Dynamics
International Symposium on Mathematical Programming, Chicago 2009

Variational Analysis in Dynamics and Control
SIAM Conference on Control and Applications, San Diego 2013

Variational Analysis in Dynamics and Control
IEEE Conference on Decision and Control, Los Angeles 2014

Variational Analysis in Dynamics and Control
IEEE Conference on Decision and Control, Las Vegas 2016
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