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Motivation
Integrals

y 7!
Z

{x: g(x)y}
h(x) dx and g 7!

Z

{x: g(x)1}
h(x) dx ,

with Positively Homogeneous Functions (PHF)
Some properties (convexity, polarity)
Sub-level sets of minimum volume containing K ⇢ Rn

Exact reconstruction from moments
Recovery of the defining function of a semi-algebraic set
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Exact reconstruction

Reconstruction of a shape K ⇢ Rn (convex or not)
from knowledge of finitely many moments

y↵ =

Z

K
x↵1

1 · · · x↵n
n dx , ↵ 2 Nn

d ,

for some integer d , is a difficult and challenging problem!

EXACT recovery of K
from y = (y↵), ↵ 2 Nn

d , is even more difficult and challenging!
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Exact recovery (continued)

Examples of exact recovery:

Quadrature (planar) Domains in (R2) (Gustafsson, He,
Milanfar and Putinar (Inverse Problems, 2000))
• via an exponential transform
Convex Polytopes (in Rn) (Gravin, Lasserre, Pasechnik
and Robins (Discrete & Comput. Geometry (2012))
• Use Brion-Barvinok-Khovanski-Lawrence-Pukhlikov
moment formula for projections

Z

P
hc, xij dx combined with

a Prony-type method to recover the vertices of P.
and extension to Non convex polyhedra by Pasechnik et al.
• via inversion of Fantappié transform
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Approximate recovery can de done in multi-dimensions
(Cuyt, Golub, Milanfar and Verdonk, 2005) via :

(multi-dimensional versions of) homogeneous Padé
approximants applied to the Stieltjes transform.
cubature formula at each point of grid
solving a linear system of equations to retrieve the
indicator function of K
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This talk: I
Exact recovery.
G = { x 2 Rn : g(x)  1 } compact.
g is a nonnegative homogeneous polynomial
Data are finitely many moments:

y↵ =

Z

G
x↵ dx, ↵ 2 Nn

d .

• Also works for Quasi-homogeneous polynomials, i.e., when

g(�u1x1, . . . ,�
unxn) = � g(x), x 2 Rn, � > 0

for some vector u 2 Qn.

(d-Homogeneous =u-quasi homogeneous with ui =
1
d for all i).
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This talk: II
Exact recovery.
G ⇢ Rn is open with G = int G and with real algebraic
boundary @G. A polynomial of degree d vanishes on @G.
Data are finitely many moments:

y↵ =

Z

G
x↵ dx, ↵ 2 Nn

d .
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So we are now concerned with PHFs, their sublevel sets and in
particular, the integral

y 7! Ig,h(y) :=

Z

{x : g(x)y}
h(x) dx,

as a function Ig,h : R+ ! R when g, h are PHFs.

With y fixed, we are also interested in

g 7! Ig,h(y),

now as a function of g, especially when g is a nonnegative
homogeneous polynomial.

Nonnegative homogeneous polynomials are particularly
interesting as they can be used to approximate norms; see e.g.
Barvinok

Jean B. Lasserre Recovery of algebraic-exponential data from moments



So we are now concerned with PHFs, their sublevel sets and in
particular, the integral

y 7! Ig,h(y) :=

Z

{x : g(x)y}
h(x) dx,

as a function Ig,h : R+ ! R when g, h are PHFs.

With y fixed, we are also interested in

g 7! Ig,h(y),

now as a function of g, especially when g is a nonnegative
homogeneous polynomial.

Nonnegative homogeneous polynomials are particularly
interesting as they can be used to approximate norms; see e.g.
Barvinok

Jean B. Lasserre Recovery of algebraic-exponential data from moments



Some motivation

As already observed in Morosov and Shakirov1 the latter
integral is related in a simple and remarkable manner to the
non-Gaussian integral R

Rn h exp(�g)dx .

Functional integrals appear frequently in quantum Physics

. . . ... where a challenging issue is to provide
exact formulas for

R
exp(�g) dx , the most well-known being

when deg g = 2, i.e., g(x) = xT Qx , with Q � 0,

d = 2 )
Z

exp(�g) dx =
Ctep
det(Q)

.

Observe that det(Q) is an algebraic invariant of g,

1New and old results in Resultant theory, arXiv.0911.5278v1.
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In particular, as a by-product in the important particular case
when h = 1, they have proved that for all forms g of degree d ,

Vol ({x : g(x)  1}) =

Z

{x : g(x)1}
dx

= cte(d) ·
Z

Rn
exp(�g)dx,

where the constant depends only on d and n.
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In fact, a formula of exactly the same flavor was already known
for convex sets, and was the initial motivation of our work.
Namely, if C ⇢ Rn is convex, its support function

x 7! �C(x) := sup {xT y : y 2 C},

is a PHF of degree 1, and the polar C� ⇢ Rn of C is the convex
set {x : �C(x)  1}.

Then . . .

vol (C�) =
1
n!

Z

Rn
exp(��C(x)) dx , 8C.
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Let g be a nonnegative PHF such that vol({x : g(x)  1}) < 1.

Theorem
Let g, h be PHFs of degree 0 < d and p respectively, then:

Z

{x : g(x)y}
h dx =

y (n+p)/d

�(1 + (n + p)/d)

Z

Rn
exp(�g) h dx

vol ({x : g(x)  y}) =
yn/d

�(1 + n/d)

Z

Rn
exp(�g) dx

whenever the left-hand-side is finite.
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Proof

Observe that Ig,h(y) vanishes on (�1, 0]. For 0 < � 2 R, its
Laplace transform � 7! LIg,h(�) =

R1
0 exp(��y)Ig,h(y) dy reads:

LIg,h(�) =

Z 1

0
exp(��y)

 Z

{x :g(x)y}
hdx

!
dy

=

Z

Rn
h(x)

 Z 1

g(x)
exp(��y)dy

!
dx [by Fubini]

=
1
�

Z

Rn
h(x) exp(��g(x)) dx

=
1

�1+(n+p)/d

Z

Rn
h(z) exp(�g(z)) dz [by homog]

=

Z

Rn
h(z) exp(�g(z)) dz

�(1 + (n + p)/d)
Ly (n+p)/d (�).
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And so, by analyticity and the Identity theorem of analytical
functions

Ig,h(y) =
y (n+p)/d

�(1 + (n + p)/d)

Z

Rn
h(x) exp(�g(x)) dx ,
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I. Convexity

An interesting issue is to analyze how the Lebesgue volume
vol {x 2 Rn : g(x)  1}, (i.e. vol (G)) changes with g.

Corollary
Let h be a PHF of degree p and let Cd ⇢ R[x ]d be the convex
cone of homogeneous polynomials g of degree at most d such
that

R
G |h| dx < 1. Then the function f h : Cd ! R,

g 7! f h(g) :=

Z

G
h dx , g 2 Cd ,

is a PHF of degree �(n + p)/d,
convex whenever h is nonnegative and strictly convex if
h > 0 on Rn \ {0}
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Convexity (continued)

Corollary (continued)
Moreover, if h is continuous and g 2 int(Cd) then:

@f h(g)
@g↵

=
�1

�(1 + (n + p)/d)

Z

Rn
x↵ h exp(�g) dx

=
��(2 + (n + p)/d)
�(1 + (n + p)/d)

Z

G
x↵ h dx

@2f h(g)
@g↵@g�

=
�1

�(1 + (n + p)/d)

Z

Rn
x↵+� h exp(�g) dx
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PROOF: Just use
Z

{x : g(x)1}
h dx =

1
�(1 + (n + p)/d)

Z

Rn
h exp(�g) dx

Notice that proving convexity directly would be non trivial but
becomes easy when using the previous lemma!

Jean B. Lasserre Recovery of algebraic-exponential data from moments



PROOF: Just use
Z

{x : g(x)1}
h dx =

1
�(1 + (n + p)/d)

Z

Rn
h exp(�g) dx

Notice that proving convexity directly would be non trivial but
becomes easy when using the previous lemma!

Jean B. Lasserre Recovery of algebraic-exponential data from moments



II. Polarity

For a set C ⇢ Rn, recall:
The support function x 7! �C(x) := sup

y
{xT y : y 2 C}

The POLAR C� := {x 2 Rn : �C(x)  1}
and for a PHF g of degree d , its Legendre-Fenchel
conjugate g⇤(x) = sup

y
{xT y � g(y)} is a PHF of degree q

with 1
d + 1

q = 1.
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Polarity (continued)

Lemma
Let g be a closed proper convex PHF of degree 1 < d and let
G = {x : g(x)  1/d}. Then:

G� = {x 2 Rn : g⇤(x)  1/q}

vol (G) =
p�n/p

�(1 + n/p)

Z
exp(�g) dx

vol (G�) =
q�n/q

�(1 + n/q)

Z
exp(�g⇤) dx

! yields completely symmetric formulas for g and its conjugate
g⇤.
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Examples

g(x) = |x |3 so that g⇤(x) = 2
3
p

3
|x |3/2. And so

G = [�3�1/3, 3�1/3]; G� = [�31/3, 31/3].

TV screen: g(x) = x4
1 + x4

2 so that
g⇤(x) = 4�4/33(x4/3

1 + x4/3
2 ). And,

G = {x : x2
1 + x4

2  1
4
}; G� = {x : x4/3

1 + x4/3
2  41/3}.

g(x) = |x | so that d 6> 1, and g⇤(x) = 0 if x 2 [�1, 1], and
+1 otherwise. Hence G = {x : |x |  1} = [�1, 1] and with
q = +1,

G� = [�1, 1] = {x : g⇤(x)  1
q
= 0}.
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III. Sublevel sets G of minimum volume

If K ⇢ Rn is compact then computing the ellipsoid ⇠ of minimum
volume containing K is a classical problem whose optimal
solution is called the Löwner-John ellipsoid.
So consider the following problem:

Find an homogeneous polynomial g 2 R[x ]2d such that its sub
level set G := {x : g(x)  1} contains K and has minimum
volume among all such levels sets with this inclusion property.
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Let P[x ]2d be the convex cone of homogeneous polynomials of
degree 2d whose sub-level set G = {x : g(x)  1} has finite
Lebesgue volume and with K ⇢ Rn, let C2d(K) be the convex
cone of polynomials nonnegative on K.

Lemma
Let K ⇢ Rn be compact. The minimum volume of a sublevel set
G = {x : g(x)  1}, g 2 P[x ]2d , that contains K ⇢ Rn is
⇢/�(1 + n/2d) where:

P : ⇢ = inf
g2P[x ]2d

⇢Z

Rn
exp(�g) dx : 1 � g 2 C2d(K)

�
.

a finite-dimensional convex optimization problem!
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Proof

• We have seen that:

vol ({x : g(x)  1}) =
1

�(1 + n/2d)

Z

Rn
exp(�g) dx .

Moreover, the sub-level set {x : g(x)  1} contains K if and
only if 1 � g 2 C2d(K), and so ⇢/�(1 + n/2d) is the minimum
value of all volumes of sub-levels sets {x : g(x)  1},
g 2 P[x]2d , that contain K.

• Now since g 7!
R
Rn exp(�g)dx is strictly convex and C2d(K) is

a convex cone, problem P is a finite-dimensional convex
optimization problem.
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III (continued). Characterizing an optimal solution

Theorem
(a) P has a unique optimal solution g⇤ 2 P[x ]2d and if
g⇤ 2 int(P[x ]2d) there exists a Borel measure µ⇤ supported on
K such that:

(⇤) :

8
><

>:

Z

Rn
x↵ exp(�g⇤)dx =

Z

K
x↵ dµ⇤, 8|↵| = 2d

Z

K
(1 � g⇤) dµ⇤ = 0

In particular, µ⇤ is supported on the real variety
V := {x 2 K : g⇤(x) = 1} and in fact, µ⇤ can be substituted with
another measure ⌫⇤ supported on at most

�n+2d�1
2d

�
points of V .

(b) Conversely, if g⇤ 2 int(P[x ]2d) and µ⇤ satisfy (*) then g⇤ is an
optimal solution of P.
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Example

Let K ⇢ R2 be the box [�1, 1]2.

The set G4 := {x : g(x)  1 } with g homogeneous of degree 4
which contains K and has minimum volume is

x 7! g4(x) := x4
1 + y4

1 � x2
1 x2

2 ,

with vol(G4) ⇡ 4.39 much better than
- ⇡R2 = 2⇡ ⇡ 6.28 for the Löwner-John ellipsoid of minimum
volume, and
- the (convex) TV screen G := {x : (x4

1 + x4
2 )/2 <= 1} with

volume > 5.
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Example (continued)

Let K ⇢ R2 be the box [�1, 1]2.

The set G6 := {x : g(x)  1 } with g homogeneous of degree 6
which contains K and has minimum volume is

x 7! g6(x) := x6
1 + y6

1 � (x4
1 x2

2 + x2
1 x4

2 )/2,

with vol(G6) ⇡ 4.19 much better than
- ⇡R2 = 2⇡ ⇡ 6.28 for the Löwner-John ellipsoid of minimum
volume, and
- better than the set G4 with volume 4.39.
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IV. Recovering g from moments of G

Write g(x) =
P

� g� x�.

Lemma
If g is nonnegative and d-homogeneous with G compact then:

Z

G
x↵ g(x) dx

| {z }P
� g� y↵+�

,=
n + |↵|

n + d + |↵|

Z

G
x↵ dx

| {z }
y↵

, ↵ 2 Nn.

and so we see that the moments (y↵) satisfy linear
relationships explicit in terms of the coefficients of the
polynomial g that describes the boundary of G.
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So let us write g 2 Rs(d) the unknown vector of coefficients of
the unknown polynomial g.
Let Md(y) be the moment matrix of order d whose rows and
columns are indexed in the canonical basis of monomials (x↵),
↵ 2 Nn

d , and with entries

Md(y)(↵,�) = y↵+� , ↵,� 2 Nn
d .

and let yd be the vector (y↵), ↵ 2 Nn
d .

Previous Lemma states that

Md(y)g = yd ,

or, equivalently,
g = Md(y)�1 yd ,

because the moment matrix Md(y) is nonsingular whenever G
has nonempty interior.
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In other words ...

one may recover g EXACTLY from knowledge of moments (y↵)
of order d and 2d !
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Non homogeneous polynomials

If g is not quasi-homogeneous then one cannot directly relate
Z

{x:g(x)1}
dx and

Z

Rn
exp(�g(x)) dx.

But still the Laplace transform � 7! F (�) of the function

y 7! f (y) :=

Z

{x:| g(x) |y}
dx

is the non Gaussian integral

� 7! F (�) =
1
�

Z

Rn
exp(�� | g(x) |) dx.
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Nice asymptotic results are available (Vassiliev)

f (y) ⇡ ya ln(y)b, as y ! 1

for some rationals a, b obtained from the Newton polytope of g.

One even has asymptotic results for

y 7! f̃ (y) := # ({x : | g(x) |  y} \ Zn ) , as y ! 1

still in the form

f̃ (y) ⇡ ya0
ln(y)b0

, as y ! 1

for some rationals a0, b0 obtained from the (modified) Newton
polytope of g.
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Exact recovery

Given a polynomial g 2 R[x]d write g(x) =
Pd

k=0 gk (x), where
each gk is homogeneous of degree k .

Lemma
Let g 2 R[x]d be such that its level set G := {x : g(x)  1} is
bounded. Then for every ↵ = (↵1, . . . ,↵n) 2 Nn:

Z

G
x↵(1 � g(x)) dx =

dX

k=1

k
n + |↵|

Z

G
x↵gk (x) dx

Observe that for each fixed arbitrary ↵ 2 Nn ...
One obtains LINEAR EQUALITIES between MOMENTS of the

Lebesgue measure on G!
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Proof:

• Use Stokes’ formula
Z

G
Div(X ) f (x) dx +

Z

G
hX ,rf (x)idx =

Z

@G
hX ,~nxi f d�,

with vector field X = x and f (x) = x↵(1 � g(x)).

• Then observe that Div(X ) = n and:

hX ,rf (x)i = |↵| f � x↵
dX

k=1

k gk (x).

? In the general case, when @G may have singular points, or
lower dimensional components, we can invoke Sard’s theorem,
for the (smooth) sublevel sets

G� = {x : g(x) < � }

and pass to the limit � ! 1, � < 1. ⇤
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Let G ⇢ Rn be open with G = int G and with real algebraic
boundary @G. A polynomial of degree d vanishes on @G.

Define a renormalised moment-type matrix Md
k (y) as follows:

- s(d) (=
�n+d

n

�
) columns indexed by � 2 Nn

d ,

- countably many rows indexed by ↵ 2 Nn
k ,

and with entries:

Md
k (y)(↵,�) :=

n + |↵|+ |�|
n + |↵| y↵+� , ↵ 2 Nn

k , � 2 Nn
d .
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Theorem
Let G ⇢ Rn be a bounded open set with real algebraic
boundary. Assume that G = int G and a polynomial of degree d
vanishes on @G and not at 0. Then the linear system

Md
2d(y)


�1
g

�
= 0,

admits a unique solution g 2 Rs(d)�1, and the polynomial g with
coefficients (0,g) satisfies

(x 2 @G) ) (g(x) = 1).
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Sketch of the proof

The identity (obtained from Stokes’ theorem)
Z

G
x↵(1 � g(x)) dx =

dX

k=1

k
n + |↵|

Z

G
x↵gk (x) dx

for all ↵ 2 Nn
k

in fact reads:
Md

k (y)

�1
g

�
= 0,

Conversely, if g solves

Md
2d(y)


�1
g

�
= 0,

then Z

@G
hx, ~nxi(1 � g(x)) x↵ d� = 0, 8↵ 2 Nn

2d .
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As @G is algebraic, one may write

~nx =
rh(x)
krh(x)k ,

for some polynomial h. Therefore

0 =

Z

@G
hx, ~nxi(1 � g(x)) x↵ d� 8↵ 2 Nn

2d

=

Z

@G
hx,rh(x)i| {z }

2R[x]d

(1 � g(x))| {z }
2R[x]d

x↵ 1
krhkd�
| {z }

d�0

8↵ 2 Nn
2d

)
Z

@G
hx,rh(x)i2
| {z }
6=0 ��a.e.

(1 � g(x))2d�0 = 0 ⇤
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For sake of rigor the boundary @G can be written

@G = Z0 [ Z1,

with Z0 being a finite union of smooth n � 1-submanifolds of Rn

leaving G on one side, Z1 is a union of the lower dimensional
strata, and �(Z1) = 0.
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Convexity

Theorem
Let G ⇢ Rn be a bounded convex open set with real algebraic
boundary. Assume that G = int G, 0 2 G, and a polynomial of
degree d vanishes on @G and not at 0. Then the linear system

Md
d(y)


�1
g

�
= 0,

admits a unique solution g 2 Rs(d)�1, and the polynomial g with
coefficients (0,g) satisfies

(x 2 @G) ) (g(x) = 1).
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? As in the previous proof, if

Md
d(y)


�1
g

�
= 0,

then Z

@G
hx, ~nxi(1 � g(x))2 d� = 0.

But one now uses that if 0 2 G then hx, ~nxi � 0.
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Example

Let us consider the two-dimensional example of the annulus

G := {x 2 R2 : 1 � x2
1 � x2

2 � 0; x2
1 + x2

2 � 2/3 � 0 }.

x1

x 2

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

The polynomial (1 � x2
1 � x2

2 )(x
2
1 + x2

2 � 2/3) is the unique
solution of M4

4(y) [�1, g] = 0.
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Example continued: Non-algebraic boundary

Let G = {x 2 R2 : x1 � �1; x2 � 1; x2  exp(�x1) }.

x1

x 2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2

1

1.5

2

2.5

3
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We now look as the eigenvector g of the smallest eigenvalue of
M3

3(y).

x1

x 2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2

1

1.5

2

2.5

3

Figure: Shape G0 = {x : g(x)  0} with d = 3
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We now look as the eigenvector g of the smallest eigenvalue of
M4

4(y).

x1

x 2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2

1

1.5

2

2.5

3

Figure: Shape G0 = {x : g(x)  0} with d = 4
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A consequence in Probability

Consider the Probability measure µ

uniformly supported on a set G of the form {x : g(x)  1}, for
some polynomial g 2 R[x]d .

Then :

• ALL moments y↵ :=

Z

G
x↵ dµ, ↵ 2 Nn, are determined from

those up to order 3d (and 2d if G is convex) !

• A similar result holds true
if now µ has a density exp(h(x)) on G (for some h 2 R[x]).

! is an extension to such measures of a well-known result for
exponential families
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Conclusion

• Compact sub-level sets G := {x : g(x)  y} of homogeneous
polynomials exhibit surprising properties. E.g.:

convexity of volume(G) with respect to the coefficients of g
Integrating a PHF h on G reduce to evaluating the non
Gaussian integral

R
h exp(�g)dx

A variational property yields a Gaussian-like property
exact recovery of G from finitely moments.
(Also works for quasi-homogeneous polynomials with
bounded sublevel sets!)
exact recovery for sets with algebraic boundary of known
degree
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Practical and important issues

COMPUTATION!: Efficient evaluation of
Z

Rn
exp(�g) dx , or

equivalently, evaluation of vol ({x : g(x)  1}!

• The property
Z

G
x↵g(x) dx =

n + |↵|
n + d + |↵|

Z

G
x↵ dx , 8↵,

helps a lot to improve efficiency of the method in Henrion,
Lasserre and Savorgnan (SIAM Review)
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