Recovery of algebraic-exponential data from moments

Jean B. Lasserre

LAAS-CNRS and Institute of Mathematics, Toulouse, France

TERRY FEST, LIMOGES, May 2015

* Part of this work is joint with M. Putinar

A (1) > (1) > (1)

Motivation

Integrals

$$y \mapsto \int_{\{\mathbf{x}: g(x) \leq y\}} h(x) \, dx$$
 and $g \mapsto \int_{\{\mathbf{x}: g(x) \leq 1\}} h(x) \, dx$,

with Positively Homogeneous Functions (PHF)

- Some properties (convexity, polarity)
- Sub-level sets of minimum volume containing $\mathbf{K} \subset \mathbb{R}^n$
- Exact reconstruction from moments
- Recovery of the defining function of a semi-algebraic set

・ 同 ト ・ ヨ ト ・ ヨ ト

- Motivation
- Integrals

$$\mathbf{y} \mapsto \int_{\{\mathbf{x}: g(x) \leq \mathbf{y}\}} \mathbf{h}(x) \, dx \quad \text{and} \quad \mathbf{g} \mapsto \int_{\{\mathbf{x}: g(x) \leq 1\}} \mathbf{h}(x) \, dx,$$

- Some properties (convexity, polarity)
- Sub-level sets of minimum volume containing $\mathbf{K} \subset \mathbb{R}^n$
- Exact reconstruction from moments
- Recovery of the defining function of a semi-algebraic set

・ 同 ト ・ ヨ ト ・ ヨ ト

- Motivation
- Integrals

$$\mathbf{y} \mapsto \int_{\{\mathbf{x}: \mathbf{g}(x) \leq \mathbf{y}\}} \mathbf{h}(x) \, dx \quad \text{and} \quad \mathbf{g} \mapsto \int_{\{\mathbf{x}: \mathbf{g}(x) \leq 1\}} \mathbf{h}(x) \, dx,$$

- Some properties (convexity, polarity)
- Sub-level sets of minimum volume containing $\mathsf{K} \subset \mathbb{R}^n$
- Exact reconstruction from moments
- Recovery of the defining function of a semi-algebraic set

・ 回 ト ・ ヨ ト ・ ヨ ト

- Motivation
- Integrals

$$\mathbf{y} \mapsto \int_{\{\mathbf{x}: \mathbf{g}(x) \leq \mathbf{y}\}} \mathbf{h}(x) \, dx \quad \text{and} \quad \mathbf{g} \mapsto \int_{\{\mathbf{x}: \mathbf{g}(x) \leq 1\}} \mathbf{h}(x) \, dx,$$

- Some properties (convexity, polarity)
- Sub-level sets of minimum volume containing $\mathbf{K} \subset \mathbb{R}^n$
- Exact reconstruction from moments
- Recovery of the defining function of a semi-algebraic set

(本間) (本語) (本語)

- Motivation
- Integrals

$$\mathbf{y} \mapsto \int_{\{\mathbf{x}: \mathbf{g}(x) \leq \mathbf{y}\}} \mathbf{h}(x) \, dx \quad \text{and} \quad \mathbf{g} \mapsto \int_{\{\mathbf{x}: \mathbf{g}(x) \leq 1\}} \mathbf{h}(x) \, dx,$$

- Some properties (convexity, polarity)
- Sub-level sets of minimum volume containing $\mathbf{K} \subset \mathbb{R}^n$
- Exact reconstruction from moments
- Recovery of the defining function of a semi-algebraic set

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Motivation
- Integrals

$$\mathbf{y} \mapsto \int_{\{\mathbf{x}: \mathbf{g}(x) \leq \mathbf{y}\}} \mathbf{h}(x) \, dx \quad \text{and} \quad \mathbf{g} \mapsto \int_{\{\mathbf{x}: \mathbf{g}(x) \leq 1\}} \mathbf{h}(x) \, dx,$$

- Some properties (convexity, polarity)
- Sub-level sets of minimum volume containing $\mathbf{K} \subset \mathbb{R}^n$
- Exact reconstruction from moments
- Recovery of the defining function of a semi-algebraic set

・ 同 ト ・ ヨ ト ・ ヨ ト …

-

Reconstruction of a shape $\mathbf{K} \subset \mathbb{R}^n$ (convex or not)

from knowledge of finitely many moments

$$\mathbf{y}_{\alpha} = \int_{\mathbf{K}} x_1^{\alpha_1} \cdots x_n^{\alpha_n} \, dx, \qquad \alpha \in \mathbb{N}_d^n,$$

for some integer *d*, is a difficult and challenging problem!

EXACT recovery of **K**

from $y = (y_{\alpha}), \alpha \in \mathbb{N}^{n}_{d}$, is even more difficult and challenging!

イロト イポト イヨト イヨト 三日

Reconstruction of a shape $\mathbf{K} \subset \mathbb{R}^n$ (convex or not)

from knowledge of finitely many moments

$$\mathbf{y}_{\alpha} = \int_{\mathbf{K}} x_1^{\alpha_1} \cdots x_n^{\alpha_n} \, dx, \qquad \alpha \in \mathbb{N}_d^n,$$

for some integer *d*, is a difficult and challenging problem!

EXACT recovery of K

from $\mathbf{y} = (\mathbf{y}_{\alpha}), \alpha \in \mathbb{N}^{n}_{\mathbf{d}}$, is even more difficult and challenging!

ヘロト ヘアト ヘビト ヘビト

Examples of exact recovery:

- Quadrature (planar) Domains in (ℝ²) (Gustafsson, He, Milanfar and Putinar (Inverse Problems, 2000))
 via an exponential transform
- Convex Polytopes (in ℝⁿ) (Gravin, Lasserre, Pasechnik and Robins (Discrete & Comput. Geometry (2012))
 Use Brion-Barvinok-Khovanski-Lawrence-Pukhlikov moment formula for projections ∫_P ⟨c, x⟩^j dx combined with a Prony-type method to recover the vertices of *P*.
- and extension to Non convex polyhedra by Pasechnik et al.
 - via inversion of Fantappié transform

Examples of exact recovery:

- Quadrature (planar) Domains in (ℝ²) (Gustafsson, He, Milanfar and Putinar (Inverse Problems, 2000))
 via an exponential transform
- Convex Polytopes (in ℝⁿ) (Gravin, Lasserre, Pasechnik and Robins (Discrete & Comput. Geometry (2012))
 Use Brion-Barvinok-Khovanski-Lawrence-Pukhlikov moment formula for projections ∫_P ⟨c, x⟩^j dx combined with a Prony-type method to recover the vertices of *P*.
- and extension to Non convex polyhedra by Pasechnik et al.
 - via inversion of Fantappié transform

Approximate recovery can de done in multi-dimensions

(Cuyt, Golub, Milanfar and Verdonk, 2005) via :

- (multi-dimensional versions of) homogeneous Padé approximants applied to the Stieltjes transform.
- cubature formula at each point of grid
- solving a linear system of equations to retrieve the indicator function of K

・ 回 ト ・ ヨ ト ・ ヨ ト

Exact recovery.

- $\mathbf{G} = \{ x \in \mathbb{R}^n : g(\mathbf{x}) \le 1 \}$ compact.
- g is a nonnegative homogeneous polynomial
- Data are finitely many moments:

$$\mathbf{y}_{lpha} = \int_{\mathbf{G}} \mathbf{x}^{lpha} \, d\mathbf{x}, \quad lpha \in \mathbb{N}_{d}^{n}.$$

Also works for Quasi-homogeneous polynomials, i.e., when

$$g(\lambda^{u_1}x_1,\ldots,\lambda^{u_n}x_n) = \lambda g(x), \qquad x \in \mathbb{R}^n, \ \lambda > 0$$

for some vector $\boldsymbol{u} \in \mathbb{Q}^n$.

(*d*-Homogeneous =u-quasi homogeneous with $u_i = \frac{1}{d}$ for all *i*).

ヘロン ヘアン ヘビン ヘビン

Exact recovery.

- $\mathbf{G} = \{ x \in \mathbb{R}^n : g(\mathbf{x}) \leq 1 \}$ compact.
- g is a nonnegative homogeneous polynomial
- Data are finitely many moments:

$$\mathbf{y}_{oldsymbol{lpha}}\,=\,\int_{\mathbf{G}}\mathbf{x}^{lpha}\,d\mathbf{x},\quad lpha\in\mathbb{N}_{d}^{n}.$$

Also works for Quasi-homogeneous polynomials, i.e., when

$$g(\lambda^{u_1}x_1,\ldots,\lambda^{u_n}x_n) = \lambda g(x), \qquad x \in \mathbb{R}^n, \, \lambda > 0$$

for some vector $\boldsymbol{u} \in \mathbb{Q}^n$.

(*d*-Homogeneous =u-quasi homogeneous with $u_i = \frac{1}{d}$ for all *i*).

・ロト ・ 理 ト ・ ヨ ト ・

Exact recovery.

- $\mathbf{G} = \{ x \in \mathbb{R}^n : g(\mathbf{x}) \leq 1 \}$ compact.
- g is a nonnegative homogeneous polynomial
- Data are finitely many moments:

$$\mathbf{y}_{lpha}\,=\,\int_{\mathbf{G}}\mathbf{x}^{lpha}\,d\mathbf{x},\quad lpha\in\mathbb{N}_{d}^{n}.$$

Also works for Quasi-homogeneous polynomials, i.e., when

$$g(\lambda^{u_1}x_1,\ldots,\lambda^{u_n}x_n) = \lambda g(x), \qquad x \in \mathbb{R}^n, \, \lambda > 0$$

for some vector $\boldsymbol{u} \in \mathbb{Q}^n$.

(*d*-Homogeneous =u-quasi homogeneous with $u_i = \frac{1}{d}$ for all *i*).

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Exact recovery.

- $\mathbf{G} = \{ x \in \mathbb{R}^n : g(\mathbf{x}) \leq 1 \}$ compact.
- g is a nonnegative homogeneous polynomial
- Data are finitely many moments:

$$\mathbf{y}_{lpha} = \int_{\mathbf{G}} \mathbf{X}^{lpha} \, d\mathbf{X}, \quad \mathbf{\alpha} \in \mathbb{N}_{d}^{n}.$$

Also works for Quasi-homogeneous polynomials, i.e., when

$$g(\lambda^{u_1}x_1,\ldots,\lambda^{u_n}x_n) = \lambda g(x), \qquad x \in \mathbb{R}^n, \, \lambda > 0$$

for some vector $\boldsymbol{u} \in \mathbb{Q}^n$.

(*d*-Homogeneous =u-quasi homogeneous with $u_i = \frac{1}{d}$ for all *i*).

イロン 不良 とくほう 不良 とうほ

Exact recovery.

- $\mathbf{G} = \{ x \in \mathbb{R}^n : g(\mathbf{x}) \leq 1 \}$ compact.
- g is a nonnegative homogeneous polynomial
- Data are finitely many moments:

$$\mathbf{y}_{lpha} = \int_{\mathbf{G}} \mathbf{X}^{lpha} \, d\mathbf{X}, \quad \mathbf{\alpha} \in \mathbb{N}_{d}^{n}.$$

• Also works for Quasi-homogeneous polynomials, i.e., when

$$g(\lambda^{u_1}x_1,\ldots,\lambda^{u_n}x_n) = \lambda g(x), \qquad x \in \mathbb{R}^n, \ \lambda > 0$$

for some vector $\boldsymbol{u} \in \mathbb{Q}^n$.

(*d*-Homogeneous =u-quasi homogeneous with $u_i = \frac{1}{d}$ for all *i*).

イロト イポト イヨト イヨト 三日

Exact recovery.

 G ⊂ ℝⁿ is open with G = int G and with real algebraic boundary ∂G. A polynomial of degree d vanishes on ∂G.

• Data are finitely many moments:

$$\mathbf{y}_{lpha} = \int_{\mathbf{G}} \mathbf{x}^{lpha} \, d\mathbf{x}, \quad lpha \in \mathbb{N}_{d}^{n}.$$

イロト イポト イヨト イヨト

э

- Exact recovery.
- G ⊂ ℝⁿ is open with G = int G and with real algebraic boundary ∂G. A polynomial of degree d vanishes on ∂G.
- Data are finitely many moments:

$$\mathbf{y}_{\alpha} = \int_{\mathbf{G}} \mathbf{x}^{\alpha} \, d\mathbf{x}, \quad \alpha \in \mathbb{N}_{d}^{n}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

ъ

- Exact recovery.
- G ⊂ ℝⁿ is open with G = int G and with real algebraic boundary ∂G. A polynomial of degree d vanishes on ∂G.
- Data are finitely many moments:

$$\mathbf{y}_{\alpha} = \int_{\mathbf{G}} \mathbf{x}^{\alpha} \, d\mathbf{x}, \quad \alpha \in \mathbb{N}_{d}^{n}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

ъ

So we are now concerned with PHFs, their sublevel sets and in particular, the integral

$$\mathbf{y} \mapsto \mathbf{I}_{g,h}(\mathbf{y}) := \int_{\{\mathbf{x} : \mathbf{g}(\mathbf{x}) \leq \mathbf{y}\}} h(\mathbf{x}) d\mathbf{x},$$

as a function $I_{g,h} : \mathbb{R}_+ \to \mathbb{R}$ when g, h are PHFs.

With y fixed, we are also interested in

 $\boldsymbol{g}\mapsto \boldsymbol{I_{g,h}(y)},$

now as a function of g, especially when g is a nonnegative homogeneous polynomial.

Nonnegative homogeneous polynomials are particularly interesting as they can be used to approximate norms; see e.g. Barvinok

・ロト ・ 理 ト ・ ヨ ト ・

So we are now concerned with PHFs, their sublevel sets and in particular, the integral

$$\mathbf{y} \mapsto \mathbf{I}_{g,h}(\mathbf{y}) := \int_{\{\mathbf{x} : \mathbf{g}(\mathbf{x}) \leq \mathbf{y}\}} h(\mathbf{x}) d\mathbf{x},$$

as a function $I_{g,h} : \mathbb{R}_+ \to \mathbb{R}$ when g, h are PHFs.

With y fixed, we are also interested in

 $\boldsymbol{g}\mapsto \boldsymbol{I_{g,h}(y)},$

now as a function of g, especially when g is a nonnegative homogeneous polynomial.

Nonnegative homogeneous polynomials are particularly interesting as they can be used to approximate norms; see e.g. Barvinok

イロト 不得 とくほ とくほ とう

As already observed in Morosov and Shakirov¹ the latter integral is related in a simple and remarkable manner to the non-Gaussian integral

 $\int_{\mathbb{R}^n} h \exp(-g) dx.$

Functional integrals appear frequently in quantum Physics

. ... where a challenging issue is to provide

exact formulas for $\int \exp(-g) dx$, the most well-known being when deg g = 2, i.e., $g(\mathbf{x}) = x^T Q x$, with $Q \succ 0$,

$$d = 2 \Rightarrow \int \exp(-g) \, dx = \frac{\operatorname{Cte}}{\sqrt{\operatorname{det}(Q)}}$$

Observe that det(Q) is an algebraic invariant of g,

¹New and old results in Resultant theory, arXiv.0911.5278y1. I > I > OQ

As already observed in Morosov and Shakirov¹ the latter integral is related in a simple and remarkable manner to the non-Gaussian integral

$$\int_{\mathbb{R}^n} h \exp(-g) dx.$$

Functional integrals appear frequently in quantum Physics

.... where a challenging issue is to provide

exact formulas for $\int \exp(-g) dx$, the most well-known being when deg g = 2, i.e., $g(\mathbf{x}) = x^T Q x$, with $Q \succ 0$,

$$d = 2 \Rightarrow \int \exp(-g) \, dx = \frac{\operatorname{Cte}}{\sqrt{\operatorname{det}(Q)}}$$

Observe that det(Q) is an algebraic invariant of g,

¹New and old results in Resultant theory, arXiv.0911.5278y1.. 🗉 📃 🧠 🦉

In particular, as a by-product in the important particular case when h = 1, they have proved that for all *forms g* of degree d,

$$\operatorname{Vol}\left(\{x : g(x) \le 1\}\right) = \int_{\{x : g(x) \le 1\}} dx$$
$$= \operatorname{cte}(d) \cdot \int_{\mathbb{R}^n} \exp(-g) d\mathbf{x},$$

where the constant depends only on *d* and *n*.

< 回 > < 三 >

In fact, a formula of exactly the same flavor was already known for convex sets, and was the initial motivation of our work. Namely, if $C \subset \mathbb{R}^n$ is convex, its support function

$$x \mapsto \sigma_{\mathcal{C}}(x) := \sup \{x^T y : y \in \mathcal{C}\},\$$

is a PHF of degree 1, and the polar $C^{\circ} \subset \mathbb{R}^n$ of *C* is the convex set $\{x : \sigma_C(x) \leq 1\}$.

Then ...

$$\operatorname{vol}(\mathcal{C}^\circ) = \frac{1}{n!} \int_{\mathbb{R}^n} \exp(-\sigma_{\mathcal{C}}(x)) \, dx, \qquad \forall \mathcal{C}.$$

▲ □ ▶ ▲ □ ▶ ▲

Let *g* be a nonnegative PHF such that $vol({x : g(x) \le 1}) < \infty$.

Theorem

Let g, h be PHFs of degree 0 < d and p respectively, then:

$$\int_{\{x:g(x)\leq y\}} h\,dx = \frac{y^{(n+p)/d}}{\Gamma(1+(n+p)/d)} \int_{\mathbb{R}^n} \exp(-g)\,h\,dx$$

$$\operatorname{vol}\left(\{x : g(x) \leq y\}\right) = \frac{y^{n/d}}{\Gamma(1+n/d)} \int_{\mathbb{R}^n} \exp(-g) \, dx$$

whenever the left-hand-side is finite.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Proof

Observe that $I_{g,h}(y)$ vanishes on $(-\infty, 0]$. For $0 < \lambda \in \mathbb{R}$, its Laplace transform $\lambda \mapsto \mathcal{L}_{I_{g,h}}(\lambda) = \int_0^\infty \exp(-\lambda y) I_{g,h}(y) \, dy$ reads:

$$\mathcal{L}_{l_{g,h}}(\lambda) = \int_{0}^{\infty} \exp(-\lambda y) \left(\int_{\{x:g(x) \le y\}}^{\infty} h dx \right) dy$$

$$= \int_{\mathbb{R}^{n}} h(x) \left(\int_{g(x)}^{\infty} \exp(-\lambda y) dy \right) dx \quad \text{[by Fubini]}$$

$$= \frac{1}{\lambda} \int_{\mathbb{R}^{n}} h(x) \exp(-\lambda g(x)) dx$$

$$= \frac{1}{\lambda^{1+(n+p)/d}} \int_{\mathbb{R}^{n}} h(z) \exp(-g(z)) dz \quad \text{[by homog]}$$

$$= \frac{\int_{\mathbb{R}^{n}} h(z) \exp(-g(z)) dz}{\Gamma(1+(n+p)/d)} \mathcal{L}_{y^{(n+p)/d}}(\lambda).$$

And so, by analyticity and the Identity theorem of analytical functions

$$I_{g,h}(\mathbf{y}) = \frac{\mathbf{y}^{(n+p)/d}}{\Gamma(1+(n+p)/d)} \int_{\mathbb{R}^n} h(x) \exp(-g(x)) dx,$$

< 🗇 🕨

프 🕨 🗉 프

- < ≣ → <

I. Convexity

An interesting issue is to analyze how the Lebesgue volume $\operatorname{vol} \{x \in \mathbb{R}^n : g(x) \leq 1\}$, (i.e. $\operatorname{vol} (G)$) changes with g.

Corollary

Let *h* be a PHF of degree *p* and let $C_d \subset \mathbb{R}[x]_d$ be the convex cone of homogeneous polynomials *g* of degree at most *d* such that $\int_G |h| dx < \infty$. Then the function $f_h : C_d \to \mathbb{R}$,

$$g\mapsto f_h(g):=\int_G h\,dx,\qquad g\in C_d,$$

- is a PHF of degree -(n + p)/d,
- convex whenever h is nonnegative and strictly convex if h > 0 on ℝⁿ \ {0}

イロト イポト イヨト イヨト

Corollary (continued)

Moreover, if h is continuous and $g \in int(C_d)$ then:

$$\frac{\partial f_h(g)}{\partial g_\alpha} = \frac{-1}{\Gamma(1+(n+p)/d)} \int_{\mathbb{R}^n} x^\alpha h \exp(-g) dx$$
$$= \frac{-\Gamma(2+(n+p)/d)}{\Gamma(1+(n+p)/d)} \int_G x^\alpha h dx$$
$$\frac{\partial^2 f_h(g)}{\partial g_\alpha \partial g_\beta} = \frac{-1}{\Gamma(1+(n+p)/d)} \int_{\mathbb{R}^n} x^{\alpha+\beta} h \exp(-g) dx$$

イロト イポト イヨト イヨト 三日

PROOF: Just use

$$\int_{\{x: g(x) \le 1\}} h \, dx = \frac{1}{\Gamma(1 + (n + p)/d)} \int_{\mathbb{R}^n} h \exp(-g) \, dx$$

Notice that proving convexity directly would be non trivial but becomes easy when using the previous lemma!

Jean B. Lasserre Recovery of algebraic-exponential data from moments

・ 回 ト ・ ヨ ト ・ ヨ ト

э

PROOF: Just use

$$\int_{\{x: g(x) \le 1\}} h \, dx = \frac{1}{\Gamma(1 + (n + p)/d)} \int_{\mathbb{R}^n} h \exp(-g) \, dx$$

Notice that proving convexity directly would be non trivial but becomes easy when using the previous lemma!

For a set $C \subset \mathbb{R}^n$, recall:

• The support function $x \mapsto \sigma_{C}(x) := \sup_{y \in C} \{x^{T}y : y \in C\}$

• The POLAR $C^{\circ} := \{x \in \mathbb{R}^n : \sigma_C(x) \leq 1\}$

• and for a PHF *g* of degree *d*, its Legendre-Fenchel conjugate $g^*(x) = \sup_{y} \{x^T y - g(y)\}$ is a PHF of degree *q* with $\frac{1}{d} + \frac{1}{q} = 1$.

個 とくほとくほとう ほ

Lemma

Let g be a closed proper convex PHF of degree 1 < d and let $G = \{x : g(x) \le 1/d\}$. Then:

$$G^{\circ} = \{x \in \mathbb{R}^{n} : g^{*}(x) \leq 1/q\}$$

$$vol(G) = \frac{p^{-n/p}}{\Gamma(1+n/p)} \int exp(-g) dx$$

$$vol(G^{\circ}) = \frac{q^{-n/q}}{\Gamma(1+n/q)} \int exp(-g^{*}) dx$$

 \rightarrow yields completely symmetric formulas for g and its conjugate g^* .

イロト イポト イヨト イヨト 一臣

Examples

•
$$g(x) = |x|^3$$
 so that $g^*(x) = \frac{2}{3\sqrt{3}}|x|^{3/2}$. And so
 $G = [-3^{-1/3}, 3^{-1/3}]; \quad G^\circ = [-3^{1/3}, 3^{1/3}].$

• TV screen:
$$g(x) = x_1^4 + x_2^4$$
 so that $g^*(x) = 4^{-4/3} \Im(x_1^{4/3} + x_2^{4/3})$. And,

$$\mathbf{G} = \{x: x_1^2 + x_2^4 \leq \frac{1}{4}\}; \quad \mathbf{G}^\circ = \{x: x_1^{4/3} + x_2^{4/3} \leq 4^{1/3}\}.$$

• g(x) = |x| so that $d \neq 1$, and $g^*(x) = 0$ if $x \in [-1, 1]$, and $+\infty$ otherwise. Hence $G = \{x : |x| \leq 1\} = [-1, 1]$ and with $q = +\infty$,

$$G^{\circ} = [-1,1] = \{x : g^{*}(x) \leq \frac{1}{q} = 0\}.$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで
If $\mathbf{K} \subset \mathbb{R}^n$ is compact then computing the ellipsoid ξ of minimum volume containing **K** is a classical problem whose optimal solution is called the Löwner-John ellipsoid. So consider the following problem:

Find an homogeneous polynomial $g \in \mathbb{R}[x]_{2d}$ such that its sub level set $G := \{x : g(x) \le 1\}$ contains K and has minimum volume among all such levels sets with this inclusion property. Let $\mathbf{P}[x]_{2d}$ be the convex cone of homogeneous polynomials of degree 2d whose sub-level set $\mathbf{G} = \{x : g(x) \le 1\}$ has finite Lebesgue volume and with $\mathbf{K} \subset \mathbb{R}^n$, let $C_{2d}(\mathbf{K})$ be the convex cone of polynomials nonnegative on \mathbf{K} .

Lemma

Let $\mathbf{K} \subset \mathbb{R}^n$ be compact. The minimum volume of a sublevel set $\mathbf{G} = \{\mathbf{x} : g(\mathbf{x}) \leq 1\}, g \in \mathbf{P}[x]_{2d}$, that contains $\mathbf{K} \subset \mathbb{R}^n$ is $\rho/\Gamma(1 + n/2d)$ where:

$$\mathcal{P}: \qquad \rho = \inf_{g \in \mathbf{P}[x]_{2d}} \left\{ \int_{\mathbb{R}^n} \exp(-g) \, dx \, : \, 1 - g \, \in \, C_{2d}(\mathbf{K}) \right\}$$

a finite-dimensional convex optimization problem!

ヘロン 人間 とくほ とくほ とう

Let $\mathbf{P}[x]_{2d}$ be the convex cone of homogeneous polynomials of degree 2d whose sub-level set $\mathbf{G} = \{x : g(x) \le 1\}$ has finite Lebesgue volume and with $\mathbf{K} \subset \mathbb{R}^n$, let $C_{2d}(\mathbf{K})$ be the convex cone of polynomials nonnegative on \mathbf{K} .

Lemma

Let $\mathbf{K} \subset \mathbb{R}^n$ be compact. The minimum volume of a sublevel set $\mathbf{G} = \{\mathbf{x} : g(\mathbf{x}) \leq 1\}, g \in \mathbf{P}[x]_{2d}$, that contains $\mathbf{K} \subset \mathbb{R}^n$ is $\rho/\Gamma(1 + n/2d)$ where:

$$\mathcal{P}: \qquad \rho = \inf_{g \in \mathbf{P}[x]_{2d}} \left\{ \int_{\mathbb{R}^n} \exp(-g) \, dx \, : \, 1 - g \, \in \, C_{2d}(\mathbf{K}) \right\}$$

a finite-dimensional convex optimization problem!

イロト イ押ト イヨト イヨト

Proof

• We have seen that:

$$\operatorname{vol}(\{x : g(x) \leq 1\}) = \frac{1}{\Gamma(1 + n/2d)} \int_{\mathbb{R}^n} \exp(-g) \, dx.$$

Moreover, the sub-level set $\{x : g(x) \le 1\}$ contains **K** if and only if $1 - g \in C_{2d}(\mathbf{K})$, and so $\rho/\Gamma(1 + n/2d)$ is the minimum value of all volumes of sub-levels sets $\{x : g(x) \le 1\}$, $g \in \mathbf{P}[\mathbf{x}]_{2d}$, that contain **K**.

• Now since $g \mapsto \int_{\mathbb{R}^n} \exp(-g) dx$ is strictly convex and $C_{2d}(\mathsf{K})$ is a convex cone, problem \mathcal{P} is a finite-dimensional convex optimization problem. \Box

< 回 > < 回 > < 回 > … 回

III (continued). Characterizing an optimal solution

Theorem

(a) \mathcal{P} has a unique optimal solution $g^* \in \mathbf{P}[x]_{2d}$ and if $g^* \in \operatorname{int}(\mathbf{P}[x]_{2d})$ there exists a Borel measure μ^* supported on **K** such that:

(*):
$$\begin{cases} \int_{\mathbb{R}^n} x^{\alpha} \exp(-g^*) dx = \int_{\mathbf{K}} x^{\alpha} d\mu^*, \quad \forall |\alpha| = 2d \\ \int_{\mathbf{K}} (1 - g^*) d\mu^* = 0 \end{cases}$$

In particular, μ^* is supported on the real variety $V := \{x \in \mathbf{K} : g^*(\mathbf{x}) = 1\}$ and in fact, μ^* can be substituted with another measure ν^* supported on at most $\binom{n+2d-1}{2d}$ points of V.

(b) Conversely, if $g^* \in int(\mathbf{P}[x]_{2d})$ and μ^* satisfy (*) then g^* is an optimal solution of \mathcal{P} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Theorem

(a) \mathcal{P} has a unique optimal solution $g^* \in \mathbf{P}[x]_{2d}$ and if $g^* \in \operatorname{int}(\mathbf{P}[x]_{2d})$ there exists a Borel measure μ^* supported on **K** such that:

(*):
$$\begin{cases} \int_{\mathbb{R}^n} x^{\alpha} \exp(-g^*) dx = \int_{\mathbf{K}} x^{\alpha} d\mu^*, \quad \forall |\alpha| = 2d \\ \int_{\mathbf{K}} (1 - g^*) d\mu^* = 0 \end{cases}$$

In particular, μ^* is supported on the real variety $V := \{x \in \mathbf{K} : g^*(\mathbf{x}) = 1\}$ and in fact, μ^* can be substituted with another measure ν^* supported on at most $\binom{n+2d-1}{2d}$ points of V. (b) Conversely, if $g^* \in \operatorname{int}(\mathbf{P}[x]_{2d})$ and μ^* satisfy (*) then g^* is an optimal solution of \mathcal{P} .

イロト イ理ト イヨト イヨト

3

Let $\mathbf{K} \subset \mathbb{R}^2$ be the box $[-1, 1]^2$.

The set $G_4 := \{x : g(x) \le 1\}$ with *g* homogeneous of degree 4 which contains **K** and has minimum volume is

$$\mathbf{x} \mapsto \mathbf{g}_4(\mathbf{x}) := x_1^4 + y_1^4 - x_1^2 x_2^2,$$

with $vol(G_4) \approx 4.39$ much better than - $\pi R^2 = 2\pi \approx 6.28$ for the Löwner-John ellipsoid of minimum volume, and

- the (convex) TV screen $\textbf{G}:=\{\textbf{x}:(x_1^4+x_2^4)/2<=1\}$ with volume >5.

・ 同 ト ・ ヨ ト ・ ヨ ト

Jean B. Lasserre Recovery of algebraic-exponential data from moments

・ロト ・聞ト ・ヨト ・ヨト

E 900

Let $\mathbf{K} \subset \mathbb{R}^2$ be the box $[-1, 1]^2$.

The set $G_6 := \{x : g(x) \le 1\}$ with *g* homogeneous of degree 6 which contains **K** and has minimum volume is

$$\mathbf{x} \mapsto g_6(\mathbf{x}) := x_1^6 + y_1^6 - (x_1^4 x_2^2 + x_1^2 x_2^4)/2,$$

with $vol(G_6) \approx 4.19$ much better than - $\pi R^2 = 2\pi \approx 6.28$ for the Löwner-John ellipsoid of minimum volume, and

- better than the set G_4 with volume 4.39.

▲帰▶ ▲ 国▶ ▲ 国▶

Jean B. Lasserre Recovery of algebraic-exponential data from moments

・ロト ・聞ト ・ヨト ・ヨト

₹ 990

IV. Recovering g from moments of G

Write
$$g(x) = \sum_{\beta} g_{\beta} x^{\beta}$$
.

Lemma

If g is nonnegative and d-homogeneous with G compact then:

$$\underbrace{\int_{G} x^{\alpha} g(x) dx}_{\sum_{\beta} g_{\beta} y_{\alpha+\beta}} = \frac{n+|\alpha|}{n+d+|\alpha|} \underbrace{\int_{G} x^{\alpha} dx}_{y_{\alpha}}, \qquad \alpha \in \mathbb{N}^{n}.$$

and so we see that the moments (y_{α}) satisfy linear relationships explicit in terms of the coefficients of the polynomial *g* that describes the boundary of *G*.

イロト イポト イヨト イヨト

So let us write $\mathbf{g} \in \mathbb{R}^{s(d)}$ the unknown vector of coefficients of the unknown polynomial g.

Let $\mathbf{M}_{d}(\mathbf{y})$ be the moment matrix of order d whose rows and columns are indexed in the canonical basis of monomials (x^{α}) , $\alpha \in \mathbb{N}_{d}^{n}$, and with entries

 $\mathbf{M}_{\mathbf{d}}(\mathbf{y})(\alpha,\beta) = \mathbf{y}_{\alpha+\beta}, \qquad \alpha,\beta \in \mathbb{N}_{\mathbf{d}}^{n}.$

and let \mathbf{y}^d be the vector $(\mathbf{y}_{\alpha}), \alpha \in \mathbb{N}^n_d$.

Previous Lemma states that

 $\mathbf{M}_{\mathbf{d}}(\mathbf{y})\mathbf{g} = \mathbf{y}^{\mathbf{d}},$

or, equivalently,

$$\mathbf{g} = \mathbf{M}_{d}(\mathbf{y})^{-1} \, \mathbf{y}^{d},$$

because the moment matrix $\mathbf{M}_d(\mathbf{y})$ is nonsingular whenever *G* has nonempty interior.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

In other words ...

one may recover g EXACTLY from knowledge of moments (y_{α}) of order d and 2d!

Jean B. Lasserre Recovery of algebraic-exponential data from moments

・ 4 回 ト ・ (回 ト ・

포 > 포

If g is not quasi-homogeneous then one cannot directly relate

$$\int_{\{\mathbf{x}:g(\mathbf{x})\leq 1\}} d\mathbf{x} \text{ and } \int_{\mathbb{R}^n} \exp(-g(\mathbf{x})) d\mathbf{x}.$$

But still the Laplace transform $\lambda \mapsto F(\lambda)$ of the function

$$\mathbf{y} \mapsto f(\mathbf{y}) := \int_{\{\mathbf{x}: |g(\mathbf{x})| \le \mathbf{y}\}} d\mathbf{x}$$

is the non Gaussian integral

$$\lambda \mapsto F(\lambda) = \frac{1}{\lambda} \int_{\mathbb{R}^n} \exp(-\lambda |g(\mathbf{x})|) d\mathbf{x}.$$

🗇 🕨 🖉 🖻 🖌 🖉 🕨

Nice asymptotic results are available (Vassiliev)

$$f(\mathbf{y}) \approx \mathbf{y}^{\mathbf{a}} \ln(\mathbf{y})^{\mathbf{b}}, \text{ as } \mathbf{y} \rightarrow \infty$$

for some rationals *a*, *b* obtained from the Newton polytope of *g*.

One even has asymptotic results for

$$\mathbf{y} \mapsto \tilde{f}(\mathbf{y}) := \# \left(\{ \mathbf{x} : | \mathbf{g}(\mathbf{x}) | \le \mathbf{y} \} \cap \mathbf{Z}^n \right), \text{ as } \mathbf{y} \to \infty$$

still in the form

$$ilde{f}({m y}) \,pprox\, {m y}^{a'}\,\ln({m y})^{b'}, \quad {
m as}\,\,{m y} \,{
m
ightarrow} \,\infty$$

for some rationals a', b' obtained from the (modified) Newton polytope of g.

イロト イポト イヨト イヨト 一臣

Given a polynomial $g \in \mathbb{R}[\mathbf{x}]_d$ write $g(\mathbf{x}) = \sum_{k=0}^d g_k(\mathbf{x})$, where each g_k is homogeneous of degree k.

Lemma

Let $g \in \mathbb{R}[\mathbf{x}]_d$ be such that its level set $\mathbf{G} := {\mathbf{x} : g(\mathbf{x}) \le 1}$ is bounded. Then for every $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n$:

$$\int_{\mathbf{G}} \mathbf{x}^{\alpha} (1 - g(\mathbf{x})) \, d\mathbf{x} = \sum_{k=1}^{d} \frac{k}{n + |\alpha|} \int_{\mathbf{G}} \mathbf{x}^{\alpha} g_{k}(\mathbf{x}) \, d\mathbf{x}$$

Observe that for each fixed arbitrary $\alpha \in \mathbb{N}^n$..

One obtains LINEAR EQUALITIES between MOMENTS of the Lebesgue measure on G!

イロト イポト イヨト イヨト 三日

Given a polynomial $g \in \mathbb{R}[\mathbf{x}]_d$ write $g(\mathbf{x}) = \sum_{k=0}^d g_k(\mathbf{x})$, where each g_k is homogeneous of degree k.

Lemma

Let $g \in \mathbb{R}[\mathbf{x}]_d$ be such that its level set $\mathbf{G} := {\mathbf{x} : g(\mathbf{x}) \le 1}$ is bounded. Then for every $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n$:

$$\int_{\mathbf{G}} \mathbf{x}^{\alpha} (1 - g(\mathbf{x})) \, d\mathbf{x} = \sum_{k=1}^{d} \frac{k}{n + |\alpha|} \int_{\mathbf{G}} \mathbf{x}^{\alpha} g_{k}(\mathbf{x}) \, d\mathbf{x}$$

Observe that for each fixed arbitrary $\alpha \in \mathbb{N}^n \dots$

One obtains LINEAR EQUALITIES between MOMENTS of the Lebesgue measure on G!

イロト イポト イヨト イヨト 一日

Proof:

Use Stokes' formula

$$\int_{\mathbf{G}} \operatorname{Div}(X) f(\mathbf{x}) \, d\mathbf{x} + \int_{\mathbf{G}} \langle X, \nabla f(\mathbf{x}) \rangle d\mathbf{x} = \int_{\partial \mathbf{G}} \langle X, \vec{n}_{\mathbf{x}} \rangle \, f \, d\sigma,$$

with vector field $X = \mathbf{x}$ and $f(\mathbf{x}) = \mathbf{x}^{\alpha}(1 - \mathbf{g}(\mathbf{x}))$.

• Then observe that Div(X) = n and:

$$\langle X, \nabla f(\mathbf{x}) \rangle = |\alpha| f - \mathbf{x}^{\alpha} \sum_{k=1}^{d} k g_k(\mathbf{x}).$$

 \star In the general case, when ∂G may have singular points, or lower dimensional components, we can invoke Sard's theorem, for the (smooth) sublevel sets

$$G_{\gamma} = \{ \mathbf{x} : g(\mathbf{x}) < \gamma \}$$

and pass to the limit $\gamma o 1, \ \gamma < 1.$

Proof:

• Use Stokes' formula

$$\int_{\mathbf{G}} \operatorname{Div}(X) f(\mathbf{x}) \, d\mathbf{x} + \int_{\mathbf{G}} \langle X, \nabla f(\mathbf{x}) \rangle d\mathbf{x} = \int_{\partial \mathbf{G}} \langle X, \vec{n}_{\mathbf{x}} \rangle \, f \, d\sigma,$$

with vector field $X = \mathbf{x}$ and $f(\mathbf{x}) = \mathbf{x}^{\alpha}(1 - g(\mathbf{x}))$.

• Then observe that Div(X) = n and:

$$\langle X, \nabla f(\mathbf{x}) \rangle = |\alpha| f - \mathbf{x}^{\alpha} \sum_{k=1}^{d} k g_k(\mathbf{x}).$$

 \star In the general case, when ∂G may have singular points, or lower dimensional components, we can invoke Sard's theorem, for the (smooth) sublevel sets

$$G_{\gamma} = \{\, \mathbf{x} : g(\mathbf{x}) < \gamma \,\}$$

and pass to the limit $\gamma \rightarrow 1, \ \gamma < 1.$

イロン 不良 とくほう 不良 とうほ

Let $\mathbf{G} \subset \mathbb{R}^n$ be open with $\mathbf{G} = \operatorname{int} \overline{\mathbf{G}}$ and with real algebraic boundary $\partial \mathbf{G}$. A polynomial of degree *d* vanishes on $\partial \mathbf{G}$.

Define a renormalised moment-type matrix $M_k^d(\mathbf{y})$ as follows:

-
$$s(d) \ (= \binom{n+d}{n})$$
 columns indexed by $\beta \in \mathbb{N}_d^n$,

- countably many rows indexed by $\alpha \in \mathbb{N}_k^n$, and with entries:

$$\mathbf{M}_{k}^{d}(\mathbf{y})(\alpha,\beta) := \frac{n+|\alpha|+|\beta|}{n+|\alpha|} \mathbf{y}_{\alpha+\beta}, \qquad \alpha \in \mathbb{N}_{k}^{n}, \, \beta \in \mathbb{N}_{d}^{n}.$$

▲ □ ▶ ▲ □ ▶ ▲

Theorem

Let $\mathbf{G} \subset \mathbb{R}^n$ be a bounded open set with real algebraic boundary. Assume that $\mathbf{G} = \operatorname{int} \overline{\mathbf{G}}$ and a polynomial of degree d vanishes on $\partial \mathbf{G}$ and not at 0. Then the linear system

$$\mathbf{M}_{2d}^{d}(\mathbf{y})\left[\begin{array}{c}-1\\\mathbf{g}\end{array}\right]=0,$$

admits a unique solution $\mathbf{g} \in \mathbb{R}^{s(d)-1}$, and the polynomial g with coefficients $(0, \mathbf{g})$ satisfies

$$(\mathbf{x} \in \partial G) \Rightarrow (\underline{g}(\mathbf{x}) = 1).$$

(4個) (日) (日) (日) (日)

Sketch of the proof

The identity (obtained from Stokes' theorem)

$$\int_{\mathbf{G}} \mathbf{x}^{\alpha} (1 - g(\mathbf{x})) \, d\mathbf{x} = \sum_{k=1}^{d} \frac{k}{n + |\alpha|} \int_{\mathbf{G}} \mathbf{x}^{\alpha} g_{k}(\mathbf{x}) \, d\mathbf{x}$$

for all $\alpha \in \mathbb{N}_k^n$

in fact reads:

$$\mathbf{M}_{k}^{d}(\mathbf{y})\left[\begin{array}{c}-\mathbf{1}\\\mathbf{g}\end{array}\right]=\mathbf{0},$$

Conversely, if g solves

$$\mathbf{M}_{2d}^{d}(\mathbf{y}) \left[\begin{array}{c} -1 \\ \mathbf{g} \end{array} \right] = \mathbf{0},$$

then

$$\int_{\partial \mathbf{G}} \langle \mathbf{x}, \vec{n_{\mathbf{x}}} \rangle (1 - g(\mathbf{x})) \, \mathbf{x}^{\alpha} \, d\sigma = 0, \quad \forall \alpha \in \mathbb{N}^{n}_{2d}.$$

Jean B. Lasserre Recovery of algebraic-exponential data from moments

Sketch of the proof

The identity (obtained from Stokes' theorem)

$$\int_{\mathbf{G}} \mathbf{x}^{\alpha} (1 - g(\mathbf{x})) \, d\mathbf{x} = \sum_{k=1}^{d} \frac{k}{n + |\alpha|} \int_{\mathbf{G}} \mathbf{x}^{\alpha} g_{k}(\mathbf{x}) \, d\mathbf{x}$$

for all $\alpha \in \mathbb{N}_k^n$

in fact reads:

$$\mathbf{M}_{k}^{d}(\mathbf{y})\left[\begin{array}{c}-1\\\mathbf{g}\end{array}\right]=\mathbf{0},$$

Conversely, if g solves

$$\mathbf{M}^{d}_{2d}(\mathbf{y}) \left[\begin{array}{c} -1 \\ \mathbf{g} \end{array} \right] = \mathbf{0},$$

then

$$\int_{\partial \mathbf{G}} \langle \mathbf{x}, \vec{n_{\mathbf{x}}} \rangle (1 - g(\mathbf{x})) \, \mathbf{x}^{\alpha} \, d\sigma \, = \, \mathbf{0}, \quad \forall \alpha \in \mathbb{N}^{n}_{2d}.$$

Jean B. Lasserre

Recovery of algebraic-exponential data from moments

As ∂G is algebraic, one may write

$$ec{n_{\mathbf{x}}} = rac{
abla h(\mathbf{x})}{\|
abla h(\mathbf{x})\|},$$

for some polynomial h. Therefore

$$0 = \int_{\partial \mathbf{G}} \langle \mathbf{x}, \vec{n_{\mathbf{x}}} \rangle (1 - g(\mathbf{x})) \mathbf{x}^{\alpha} d\sigma \quad \forall \alpha \in \mathbb{N}_{2d}^{n}$$

$$= \int_{\partial \mathbf{G}} \underbrace{\langle \mathbf{x}, \nabla h(\mathbf{x}) \rangle}_{\in \mathbb{R}[\mathbf{x}]_{d}} \underbrace{(1 - g(\mathbf{x}))}_{\in \mathbb{R}[\mathbf{x}]_{d}} \mathbf{x}^{\alpha} \frac{1}{\|\nabla h\|} d\sigma \quad \forall \alpha \in \mathbb{N}_{2d}^{n}$$

$$\Rightarrow \int_{\partial \mathbf{G}} \underbrace{\langle \mathbf{x}, \nabla h(\mathbf{x}) \rangle^{2}}_{\neq 0 \ \sigma - a.e.} (1 - g(\mathbf{x}))^{2} d\sigma' = 0 \quad \Box$$

(過) (日) (

э

э

As ∂G is algebraic, one may write

$$ec{n_{\mathbf{x}}} = rac{
abla h(\mathbf{x})}{\|
abla h(\mathbf{x})\|},$$

for some polynomial h. Therefore

$$0 = \int_{\partial \mathbf{G}} \langle \mathbf{x}, \vec{n_{\mathbf{x}}} \rangle (1 - g(\mathbf{x})) \, \mathbf{x}^{\alpha} \, d\sigma \quad \forall \alpha \in \mathbb{N}_{2d}^{n}$$

$$= \int_{\partial \mathbf{G}} \underbrace{\langle \mathbf{x}, \nabla h(\mathbf{x}) \rangle}_{\in \mathbb{R}[\mathbf{x}]_{d}} \underbrace{(1 - g(\mathbf{x}))}_{\in \mathbb{R}[\mathbf{x}]_{d}} \, \mathbf{x}^{\alpha} \underbrace{\frac{1}{\|\nabla h\|} d\sigma}_{d\sigma'} \quad \forall \alpha \in \mathbb{N}_{2d}^{n}$$

$$\Rightarrow \int_{\partial \mathbf{G}} \underbrace{\langle \mathbf{x}, \nabla h(\mathbf{x}) \rangle^{2}}_{\neq 0 \, \sigma - a.e.} (1 - g(\mathbf{x}))^{2} d\sigma' = 0 \quad \Box$$

Jean B. Lasserre Recovery of algebraic-exponential data from moments

▲ □ ▶ ▲ □ ▶ ▲

프 🕨 🗉 프

For sake of rigor the boundary ∂G can be written

$$\partial \mathbf{G} = Z_0 \cup Z_1,$$

with Z_0 being a finite union of smooth n - 1-submanifolds of \mathbb{R}^n leaving **G** on one side, Z_1 is a union of the lower dimensional strata, and $\sigma(Z_1) = 0$.

・ 回 と ・ ヨ と ・ ヨ と

-

Theorem

Let $\mathbf{G} \subset \mathbb{R}^n$ be a bounded convex open set with real algebraic boundary. Assume that $\mathbf{G} = \operatorname{int} \overline{\mathbf{G}}$, $0 \in \mathbf{G}$, and a polynomial of degree d vanishes on $\partial \mathbf{G}$ and not at 0. Then the linear system

$$\mathbf{M}_d^d(\mathbf{y}) \left[\begin{array}{c} -1 \\ g \end{array} \right] = \mathbf{0},$$

admits a unique solution $\mathbf{g} \in \mathbb{R}^{s(d)-1}$, and the polynomial g with coefficients $(0, \mathbf{g})$ satisfies

$$(\mathbf{x} \in \partial G) \Rightarrow (\underline{g}(\mathbf{x}) = 1).$$

- 2

イロト イ理ト イヨト イヨト

 \star As in the previous proof, if

$$\mathbf{M}_{d}^{d}(\mathbf{y})\left[egin{array}{c} -1\ g\end{array}
ight]=0,$$

then

$$\int_{\partial \mathbf{G}} \langle \mathbf{x}, \vec{n_{\mathbf{x}}} \rangle (1 - g(\mathbf{x}))^2 \, d\sigma \, = \, 0.$$

But one now uses that if $0 \in \mathbf{G}$ then $\langle \mathbf{x}, \vec{n_x} \rangle \ge 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Example

Let us consider the two-dimensional example of the annulus

$$\textbf{G} \, := \, \{ \, \textbf{x} \in \mathbb{R}^2 : \, 1 - x_1^2 - x_2^2 \geq 0 ; \, x_1^2 + x_2^2 - 2/3 \geq 0 \, \}.$$

The polynomial $(1 - x_1^2 - x_2^2)(x_1^2 + x_2^2 - 2/3)$ is the unique solution of $\mathbf{M}_4^4(\mathbf{y})[-1, \mathbf{g}] = 0$.

э

Example continued: Non-algebraic boundary

Let
$$\mathbf{G} = \{\mathbf{x} \in \mathbb{R}^2 : x_1 \ge -1; x_2 \ge 1; x_2 \le \exp(-x_1)\}.$$

≣) ≣

We now look as the eigenvector g of the smallest eigenvalue of $M_3^3(y)$.

Figure: Shape $\mathbf{G}' = {\mathbf{x} : g(\mathbf{x}) \le 0}$ with d = 3

ъ

ъ

We now look as the eigenvector g of the smallest eigenvalue of $\mathbf{M}_4^4(\mathbf{y})$.

Figure: Shape $\mathbf{G}' = {\mathbf{x} : g(\mathbf{x}) \le 0}$ with d = 4

ъ

ъ

uniformly supported on a set *G* of the form $\{\mathbf{x} : g(\mathbf{x}) \le 1\}$, for some polynomial $g \in \mathbb{R}[\mathbf{x}]_d$.

Then :

• ALL moments $y_{\alpha} := \int_{G} \mathbf{x}^{\alpha} d\mu$, $\alpha \in \mathbb{N}^{n}$, are determined from those up to order 3*d* (and 2*d* if *G* is convex) !

• A similar result holds true if now μ has a density $\exp(h(\mathbf{x}))$ on *G* (for some $h \in \mathbb{R}[\mathbf{x}]$).

ightarrow is an extension to such measures of a well-known result for exponential families

(4回) (日) (日)

uniformly supported on a set *G* of the form $\{\mathbf{x} : g(\mathbf{x}) \le 1\}$, for some polynomial $g \in \mathbb{R}[\mathbf{x}]_d$.

Then :

• ALL moments $y_{\alpha} := \int_{G} \mathbf{x}^{\alpha} d\mu$, $\alpha \in \mathbb{N}^{n}$, are determined from those up to order 3*d* (and 2*d* if *G* is convex) !

• A similar result holds true

if now μ has a density $\exp(h(\mathbf{x}))$ on G (for some $h \in \mathbb{R}[\mathbf{x}]$).

ightarrow is an extension to such measures of a well-known result for exponential families

ヘロト ヘワト ヘビト ヘビト

uniformly supported on a set *G* of the form $\{\mathbf{x} : g(\mathbf{x}) \le 1\}$, for some polynomial $g \in \mathbb{R}[\mathbf{x}]_d$.

Then :

• ALL moments $y_{\alpha} := \int_{G} \mathbf{x}^{\alpha} d\mu$, $\alpha \in \mathbb{N}^{n}$, are determined from those up to order 3*d* (and 2*d* if *G* is convex) !

• A similar result holds true if now μ has a density $\exp(h(\mathbf{x}))$ on *G* (for some $h \in \mathbb{R}[\mathbf{x}]$).

ightarrow is an extension to such measures of a well-known result for exponential families

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

uniformly supported on a set *G* of the form $\{\mathbf{x} : g(\mathbf{x}) \le 1\}$, for some polynomial $g \in \mathbb{R}[\mathbf{x}]_d$.

Then :

• ALL moments $y_{\alpha} := \int_{G} \mathbf{x}^{\alpha} d\mu$, $\alpha \in \mathbb{N}^{n}$, are determined from those up to order 3*d* (and 2*d* if *G* is convex) !

• A similar result holds true if now μ has a density $\exp(h(\mathbf{x}))$ on *G* (for some $h \in \mathbb{R}[\mathbf{x}]$).

 \rightarrow is an extension to such measures of a well-known result for exponential families

イロト イポト イヨト イヨト
- Compact sub-level sets $G := \{x : g(x) \le y\}$ of homogeneous polynomials exhibit surprising properties. E.g.:
 - convexity of volume(G) with respect to the coefficients of g
 - Integrating a PHF *h* on *G* reduce to evaluating the non Gaussian integral $\int h \exp(-g) dx$
 - A variational property yields a Gaussian-like property
 - exact recovery of *G* from finitely moments.
 (Also works for quasi-homogeneous polynomials with bounded sublevel sets!)
 - exact recovery for sets with algebraic boundary of known degree

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- COMPUTATION!: Efficient evaluation of $\int_{\mathbb{R}^n} \exp(-g) dx$, or equivalently, evaluation of vol $(\{x : g(x) \le 1\}!$
 - The property

$$\int_{G} \mathbf{x}^{\alpha} g(x) \, dx = \frac{n + |\alpha|}{n + d + |\alpha|} \int_{G} x^{\alpha} \, dx, \qquad \forall \alpha,$$

helps a lot to improve efficiency of the method in Henrion, Lasserre and Savorgnan (SIAM Review)

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶

- J.B. Lasserre. A Generalization of Löwner-John's ellipsoid Theorem. *Math. Program.*, to appear.
- J.B. Lasserre. Recovering an homogeneous polynomial from moments of its level set. *Discrete & Comput. Geom.* 50, pp. 673–678, 2013.
- J.B. Lasserre and M. Putinar. Reconstruction of algebraic-exponential data from moments. Submitted
- J.B. Lasserre. Unit balls of constant volume: which one has optimal representation? submitted.

THANK YOU!

Jean B. Lasserre Recovery of algebraic-exponential data from moments

イロン イロン イヨン イヨン