Motivation	Preliminaries	Main Results	Conclusion

On the convexity of piecewise-defined functions

Yves Lucet Heinz H. Bauschke (UBC) and Hung M. Phan (UMass Lowell) Supported by NSERC DG/Accelerator & UMass Lowell

Dedicated to Terry on the occasion of his 80th birthday

イロト イポト イヨト イヨト

Motivation	Preliminaries	Main Results	Conclusion
Outline			

2 Preliminaries

3 Main Results

Motivation	Preliminaries	Main Results	Conclusion
● 00000 000			
Computational Convex Analysis			

Convex Transforms

$$f^{*}(s) = \sup_{x} \langle s, x \rangle - f(x)$$

$$M_{\lambda}f(x) = \inf_{y} [f(y) + \frac{\|x - y\|^{2}}{2\lambda}]$$

$$h_{\mu,\lambda}f(x) = -M_{\mu}(-M_{\lambda}f(x))$$

$$\mathcal{P}_{\lambda}(f_{0}, f_{1}) = [(1 - \lambda)M_{1}(f_{0}^{*}) + \lambda M_{1}(f_{1}^{*})]^{*} - \frac{1}{2}\|\cdot\|^{2}$$

$$p_{\mu}(f_{0}, f_{1}; \lambda) = -M_{\mu+\lambda(1-\lambda)} (-[(1 - \lambda)M_{\mu}f_{0} + \lambda M_{\mu}f_{1}])$$

$$k_{\lambda}(f_{1}, f_{2})(x) = \inf_{(1-\lambda_{0})y_{0}+\lambda y_{1}=x} [(1 - \lambda)f_{0} + \lambda f_{1} + \lambda(1 - \lambda)g(y_{0} - y_{1})]$$

Motivation	Preliminaries	Main Results	Conclusion
00000000			
Computational Convex An	alysis		
Convex On	erators		

Core

- Addition, scalar multiplication
- Fenchel Conjugate or Moreau envelope
- Convex Envelope

Composite

- Lasry-Lions double envelope
- Proximal Average

Motivation	Preliminaries	Main Results	Conclusion
00000000	00000	0000000	0000
Computational Convex Analysis			
History			

Fast Algorithms

FLT Brenier 89, Corrias 96, Lucet 96, Noullez 94, She 92, Deniau 95

LLT Lucet 97

PE Felzenszwalb 04

NEP Lucet 06, Moreau 65

PLT Hiriart-Urruty 07

PLQ

PLQ Lucet 06

GPH Gardiner 11, Goebel 08

CO Gardiner 10

Fit Gardiner 09

Motivation	Preliminaries	Main Results	Conclusion
00000000			
Computational Convex Analysis			

Piecewise Linear-Quadratic Functions

Definition

- Domain is the intersection of linear functions
- On each piece, the function is quadratic
- Restrict to continuous functions on ri domf.

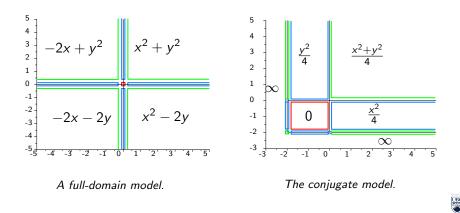
Properties

- \checkmark Closed class under convex operators
- \checkmark Hybrid symbolic numerical algorithms running in Linear-time.
- $\sqrt{}$ Even nicer for univariate functions.
- X Convex envelope of a PLQ function may not be PLQ
- X Maximum of two convex PLQ functions may not be PLQ

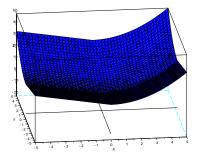
イロト イポト イヨト イヨト

Motivation	Preliminaries	Main Results	Conclusion
00000000			
Computational Convex Analysis			

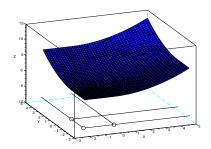
Motivation	Preliminaries	Main Results	Conclusion
Computational Convex An			
Conjugate	Entities		



Motivation ○○○○○●○○	Preliminaries	Main Results	Conclusion
Computational Convex Ana	alysis		
Conjugate	Entities		



A full-domain model.



The conjugate model.

イロト イポト イヨト イヨト 一日

Motivation	Preliminaries	Main Results	Conclusion
00000000			
Example			

$f: \mathbb{R}^2 \to \mathbb{R}$ convex?

$$f(x,y) := egin{cases} rac{x^2 + y^2 + 2\max\{0, xy\}}{|x| + |y|}, & ext{if } (x,y)
eq (0,0); \ 0, & ext{otherwise}. \end{cases}$$

イロト イロト イヨト イヨト 二日

10/31

f component-wise convex

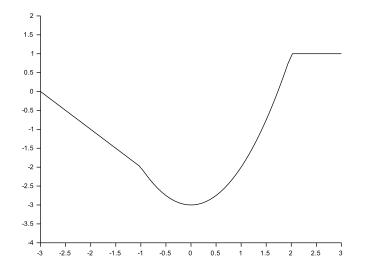
•
$$f_1(x,y) := x + y$$
 on $A_1 := \mathbb{R}_+ \times \mathbb{R}_+$

•
$$f_2(x,y) := \frac{x^2 + y^2}{-x + y}$$
 on $A_2 := \mathbb{R}_- \times \mathbb{R}_+$

•
$$f_3(x,y) := -x - y$$
 on $A_3 := \mathbb{R}_- \times \mathbb{R}_-$

•
$$f_4(x,y) := \frac{x^2 + y^2}{x - y}$$
 on $A_4 := \mathbb{R}_+ \times \mathbb{R}_-$

Motivation	Preliminaries	Main Results	Conclusion
00000000			
Example			



√ Q (~ 11 / 31

Motivation	Preliminaries	Main Results	Conclusion

Outline

2 Preliminaries

3 Main Results

Motivation	Preliminaries	Main Results	Conclusion
	0000		
Convexity = Subdifferentiability			

Lemma

Let
$$f: X \to]-\infty, +\infty]$$
 and let z_1 and z_2 be in D_f . Set $x := (1-t)z_1 + tz_2$, where $t \in [0, 1]$, and assume that $\partial f(x) \neq \emptyset$.
Then $f(x) \leq (1-t)f(z_1) + tf(z_2)$.

Proof

Let $x^* \in \partial f(x)$. $(1-t)\langle x^*, z_1 - x \rangle \le (1-t)(f(z_1) - f(x))$ $t\langle x^*, z_2 - x \rangle \le t(f(z_2) - f(x))$ $0 \le (1-t)f(z_1) + tf(z_2) - f(x)$

Zălinescu 2002, Theorem 2.4.1(iii)

If $D_f = D_{\partial f}$ is convex then f is convex.

13/31

э

(日) (同) (三) (三)

Motivation	Preliminaries ○●○○○	Main Results	Conclusion
Convexity = Subdifferentia	bility		

Add continuity, remove finite set

Lemma

Let $f: X \to \left] -\infty, +\infty \right]$ be proper. Assume

- $f|_{D_f}$ is continuous
- D_f is convex and at least 2-dimensional
- there exists a finite subset E of X such that f |_[x,y] is convex for every segment [x, y] contained in (ri D_f) \ E

Then f is convex.

Fails in dimension 1

f(x) = -|x| and $E = \{0\}$ not dim 2 and not convex

イロト イポト イヨト イヨト

Motivation	Preliminaries	Main Results	Conclusion
	00000		
Compatible Systems: Sets			

compatible systems of sets

Assume *I* is a nonempty finite set and $\mathcal{A} := \{A_i\}_{i \in I}$ is a system of convex subsets of *X*. Note $A := \bigcup_{i \in I} A_i$ \mathcal{A} is a compatible system of sets if

$$\begin{array}{l} i \in I \\ j \in I \\ i \neq j \end{array} \} \quad \Rightarrow \quad \operatorname{cl} A_i \cap \operatorname{cl} A_j \cap \operatorname{ri} A = A_i \cap A_j \cap \operatorname{ri} A$$

Examples

• Any finite system of closed convex sets is compatible

•
$$A_1 = [0, 1] \times [0, 1]$$
, $A_2 = [-1, 0] \times [0, 1]$. Then
 $A = A_1 \cup A_2 = [-1, 1] \times [0, 1]$ and ri $A =]-1, 1[\times]0, 1[$.
Thus, $\mathcal{A} = \{A_1, A_2\}$ is incompatible because

 $\mathsf{cl}\, A_1 \cap \mathsf{cl}\, A_2 \cap \mathsf{ri}\, A = \{0\} \times \left]0,1\right[\neq \varnothing = A_1 \cap A_2 \cap \mathsf{ri}\, A.$

Motivation	Preliminaries	Main Results	Conclusion
	00000		
Compatible Systems: Sets			

Colinearly ordered tuple

colinearly ordered tuple

The tuple of vectors $(x_0, \ldots, x_n) \in X^n$ is said to be colinearly ordered if

1
$$[x_0, x_n] = [x_0, x_1] \cup \cdots \cup [x_{n-1}, x_n]$$

2
$$0 \le ||x_0 - x_1|| \le ||x_0 - x_2|| \le \cdots \le ||x_0 - x_n||.$$

Proposition

Assume \mathcal{A} is a compatible system of sets Then for every segment [x, y] contained in ri \mathcal{A} , there exists a colinearly ordered tuple (x_0, \ldots, x_n) and $\{A_{i_1}, \ldots, A_{i_n}\} \subseteq \mathcal{A}$ such that

$$x_0 = x; \quad x_n = y; \quad \text{and} \quad \left(orall k \in \{1, \dots, n\}
ight) \quad [x_{k-1}, x_k] \subseteq A_{i_k}.$$

16/31

イロト 不得下 イヨト イヨト

Motivation	Preliminaries	Main Results	Conclusion
	00000		
Compatible Systems: Functions			

Compatible System of Functions

Assume

- *I* is a nonempty finite
- $\mathcal{F} := \{f_i\}_{i \in I}$ is a system of proper convex functions
- $f := \min_{i \in I} f_i$ is piecewise-defined associated with \mathcal{F}
- $I_{\mathcal{F}}(x) = \left\{ i \in I \mid x \in D_{f_i} \right\}$ is the active index set function.

 \mathcal{F} compatible system of functions if $f_i|_{D_{f_i}}$ is continuous and

$$\mathbf{D}_{f_i} \cap \mathbf{D}_{f_j} \neq \varnothing \quad \Rightarrow \quad f_i \big|_{\mathbf{D}_{f_i} \cap \mathbf{D}_{f_j}} \equiv f_j \big|_{\mathbf{D}_{f_i} \cap \mathbf{D}_{f_j}}.$$

Motivation	Preliminaries	Main Results	Conclusion

Outline

2 Preliminaries

Motivat 000000		Conclusion
Lemmas		
	Compatible System	
1	Assume ${\mathcal F}$ is compatible system of functions then	
	$\partial f(x) \subseteq igcap_{i \in I_{\mathcal{F}}(x)} \partial f_i(x)$	
ſ	Colinearly ordered	
	• ${\mathcal F}$ is compatible system of functions	
	• (a, b, c) is colinearly ordered, $D_{f_1} = [a, b]$, $D_{f_2} = [b, c]$	
	• $\partial f_1(b) \cap \partial f_2(b) \neq \varnothing$	
-	Then f is convex and	
	$\partial f(x) = igcap_{i \in I_{\mathcal{F}}(x)} \partial f_i(x) = egin{cases} \partial f_1(x), & ext{if } x \in [a, b[;\ \partial f_1(b) \cap \partial f_2(b), & ext{if } x = b;\ \partial f_2(x), & ext{if } x \in]b, c] . \end{cases}$	

Motivation	Preliminaries	Main Results ○●○○○○○○	Conclusion
Main Results			

Main Result I

- \mathcal{F} is a compatible system of functions
- $D_f = \bigcup_{i \in I} D_{f_i}$ is convex and at least 2-dimensional.
- $\{D_{f_i}\}_{i \in I}$ is a compatible system of sets
- $\exists E \subset X$ finite $x \in (\operatorname{ri} D_f) \smallsetminus E$ and $|I(x)| \ge 2 \Rightarrow \bigcap_{i \in I(x)} \partial f_i(x) \neq \emptyset$

Then f is convex and

$$(\forall x \in \operatorname{ri} D_f) \quad \varnothing \neq \partial f(x) \subseteq \bigcap_{i \in I(x)} \partial f_i(x).$$

Motivation	Preliminaries	Main Results	Conclusion
00000000	00000	0000000	0000
Main Results			

Ignore Finite number of points

- No need to check subdifferential nonemptyness at a finite number of points
- *f* convex implies subdifferential nonempty even at these (unchecked) points

Domain compatibility is required

$$f_1 = \iota_{[0,1] \times [0,1]}$$
 and $f_2 = \iota_{[-1,0[\times [0,1]]} + 1.$

- \mathcal{F} is a compatible system of functions.
- $D_f = [-1, 1] \times [0, 1]$ is convex
- $\{D_{f_i} \cap ri D_f\}_{i \in I}$ is *not* a compatible system of sets.
- f is not convex.

・ロン ・四 と ・ ヨ と ・ ヨ と

Motivation	Preliminaries	Main Results	Conclusion
	00000	00000000	0000
Main Results			

Main Result II

- \mathcal{F} is a compatible system of functions
- f_i is differentiable on int $D_{f_i} \neq \emptyset$
- $D_f = \bigcup_{i \in I} D_{f_i}$ is convex and at least 2-dimensional.
- $\{D_{f_i}\}_{i \in I}$ is a compatible system of sets
- There exists a finite subset E of X such that

$$\frac{x \in (\operatorname{int} \mathcal{D}_f) \smallsetminus E}{\{i, j\} \subseteq I(x)} \} \Rightarrow \lim_{\substack{z \to x \\ z \in \operatorname{int} \mathcal{D}_{f_i}}} \nabla f_i(z) = \lim_{\substack{z \to x \\ z \in \operatorname{int} \mathcal{D}_{f_i}}} \nabla f_j(z) \quad \text{exists.}$$

22/31

Then f is convex and C^1 on $(int D_f) \setminus E$.

Motivation	Preliminaries	Main Results	Conclusion
		00000000	
Main Results			

Corollary

- \mathcal{F} is a compatible system of functions
- $D_f = \bigcup_{i \in I} D_{f_i}$ is convex and at least 2-dimensional.
- $\{D_{f_i}\}_{i \in I}$ is a compatible system of sets
- f is continuously differentiable on int D_f .

Then f is convex.

Motivation	Preliminaries	Main Results	Conclusion
		00000000	
Example: PLQ			

PLQ functions

• ${\mathcal F}$ is a compatible system of functions

•
$$D_{f_i}$$
 is closed, $f_i(x) = 1/2\langle x, A_i x \rangle + \langle b_i, x \rangle + \gamma_i$

•
$$A_i = A_i^T \succeq 0$$

• $D_f = \bigcup_{i \in I} D_{f_i}$ is convex and at least 2-dimensional.

$$\{i,j\} \subseteq I, i \neq j, x \in D_{f_i} \cap D_{f_j} \Rightarrow A_i x + b_i = A_j x + b_j.$$

Then f is convex.

CPLQ Structure

JIE SUN, On the structure of convex piecewise quadratic functions JOTA 1992

イロン イロン イヨン イヨン 三日

Motivation	Preliminaries	Main Results	Conclusion
		00000000	
Example			

$$f: \mathbb{R}^2 \to \mathbb{R}$$
 convex?

۲

$$f(x,y) := \begin{cases} \frac{x^2 + y^2 + 2\max\{0, xy\}}{|x| + |y|}, & \text{if } (x,y) \neq (0,0) \\ 0, & \text{otherwise.} \end{cases}$$

- ${f_i}_{i \in I}$ is a compatible system of functions
- $\{D_{f_i}\}_{i \in I} = \{A_i\}_{i \in I}$ is a compatible system of sets
- f_i is differentiable on int A_i
- Hessian of each f_i is positive semi-definite on A_i

$$\lim_{\substack{(x,y) \to (a,0) \\ (x,y) \in \text{int } A_1}} \nabla f_1(x,y) = \lim_{\substack{(x,y) \to (a,0) \\ (x,y) \in \text{int } A_4}} \nabla f_4(x,y) = (1,1)$$

Take $E := \{(0,0)\}$ we deduce f convex, C^1 away from (0,0).

Motivation	Preliminaries	Main Results	Conclusion
		0000000	
Example			

Motivation	Preliminaries	Main Results	Conclusion

Outline

2 Preliminaries

3 Main Results

Motivation	Preliminaries	Main Results	Conclusion
			0000
Conclusion			

Conclusion

- Sufficient condition for convexity
- Only needs to check boundaries
- Can ignore finite number of points

References

- H. H. Bauschke, Y. Lucet, H. M. Phan. On the convexity of piecewise-defined functions. Accepted in ESAIM: Control, Optimisation and Calculus of Variations
- Y. LUCET, Techniques and Open Questions in CCA 2013
- Y. LUCET, What Shape is your Conjugate? SIREV 2010
- J. SUN, On the structure of convex piecewise quadratic functions JOTA 1992

(a)

Motivation

Preliminaries

Main Results

Conclusion

Computational Convex Analysis Toolbox

http://atoms.scilab.org/toolboxes/CCA

Computational Convex Analysis

イロト 不同下 イヨト イヨト

(22/2803 downloads) Algorithms for manipulating and visualizing convex functions.

- Details	
Version	1.6.2-2
Author(s)	Yves Lucet
Entity	University of British Columbia - Okanagan
Package maintainer	Yves Lucet
Categories	Optimization
	Modeling and Control Tools
	Optimization - General
WebSite	https://people.ok.ubc.ca/ylucet/cca.php @
License	GPL (3.0)
Supported Scilab Versions	>= 5.4
Creation Date	10th of May 2015
ATOMS packaging system	Available on 👌 🖧 🥶 🦛 🦉 🚒
How To Install	atomsInstall(CCA')

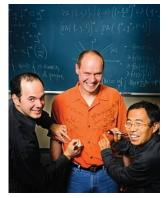
୬ ୯.୦° 29 / 31

3

Motivation	Preliminaries	Main Results	Conclusion ○○●○
West Coast Optimization	Meeting		
West Coa	st Optimization Mee	ting	
 Kelow 	na, BC, Canada		
- ·			

• October 10, 2015

• https://ocana.ok.ubc.ca/seminars.php



・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Motivation	Preliminaries	Main Results	Conclusion ○○○●
West Coast Optimization Meeting			
Happy Birthda	y Terry		

