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Happy 80th year Terry!



Goals

Solve
0 ∈ F (x)

for F : E ⇒ E with E a Euclidean space.
I #1. Convergence (with rates and radii) of Picard iterations:

xk+1 ∈ Txk

I #2. Algorithms:
I Feasibility: alternating projections
I Optimization: Douglas-Rachford

I #2. Applications:
I Ptychography/Phase retrieval
I Rank constrained affine feasibility
I Optimization with high-dimensional structured constraints



Building blocks

I Resolvent: (Id +λF )−1

I Prox operator: for a function f : X → R , define

proxηf (x) := argmin y f (y) +
1
2η
‖y − x‖2

I Proximal reflector: Rηf := 2 proxηf − Id
I Projector: if f = ιΩ for Ω ⊂ X closed and nonempty, then

proxηf (x) = PΩx where

PΩx := {x ∈ Ω | ‖x − x‖ = dist (x ,Ω)}
dist (x ,Ω) := inf

y∈Ω
‖x − y‖.

I Reflector: if f = ιΩ for some closed, nonempty set Ω ⊂ X , then
RΩ := 2PΩ − Id



Algorithms

I Proximal point: TPP := (Id +λF )−1 (fixed step length)

and for F = ∂f1 + ∂f2, splitting algorithms:
I Forward-backward/Projected (sub)gradients:

TFB := proxf1 (Id−λ∂f2)

I Backward-backward/Alternating projections: TAP := proxf1 proxf2
I Douglas-Rachford (ADMM):

TDR := proxf1

(
2 proxf2 − Id

)
− proxf2 + Id



Convergence analysis
Monotone/Convex

I Monotone proximal point: Martinet, Rokafellar
I Convex forward-backward: Eckstein, Combettes-Wajs,

Combettes-Pesquet, Combettes-Dung-Vu, Nesterov, Beck-Teboulle
I Convex alternating projections: von Neumann, Aronszajn,

Cheney-Goldstein, Bregman, Gubin-Polyak-Raik
I Convex Douglas-Rachford/ADMM: Lions-Mercier, Gabay

Nonmonotone/Nonconvex
I Nonmonotone proximal point: Spingarn, Pennanen,

Combettes-Pennanen, Iusem-Pennanen-Svaiter, Aragón-Geoffroy,
Aragón-Dontchev-Geoffroy, Attouch-Bolte

I Nonconvex alternating projections: Combettes-Trussell, Lewis-Malick,
Lewis-L.-Malick, Bauschke-L.-Phan-Wang, Hesse-L.,
Hesse-L.-Neumann, Noll-Rondepierre

I Nonconvex forward-backward: Attouch-Bolte-Redont-Soubeyran
I Nonconvex Douglas-Rachford: Borwein-Sims, Hesse-L.,

Hesse-L.Neumann, Phan, Bauschke-Noll
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Ambient regularity

(S, ε)-nonexpansive mappings
Let D and S be nonempty subsets of E and let T be a (multi-valued)
mapping from D to E.

I T is called (S, ε)-nonexpansive on D if, at each x ∈ S, for all
x ∈ D

‖x+ − x+‖ ≤
√

1 + ε ‖x − x‖
∀ x+ ∈ T x and ∀ x+ ∈ Tx .

I If this holds with ε = 0 then T is called S-nonexpansive on D.
I If this holds with ε = 0 and S = D then T is called nonexpansive

on D.



(S, ε)-firmly nonexpansive mappings
Let D and S be nonempty subsets of E and let T be a (multi-valued)
mapping from D to E.

I T is called (S, ε)-firmly nonexpansive on D if, at each x ∈ S, for
all x ∈ D

‖x+ − x+‖2 + ‖(x − x+)− (x − x+)‖2 ≤ (1 + ε) ‖x − x‖2

∀ x+ ∈ T x and ∀x+ ∈ Tx .

I If this holds with ε = 0 then T is called S-firmly nonexpansive on
D.

I If this holds with ε = 0 and S = D then T is called firmly
nonexpansive on D.



Fixed points of set-valued mappings
The set of fixed points of a set-valued mapping T : X ⇒ X is defined
by

{x ∈ X | x ∈ T (x)} .

When T := PAPB this includes the point {(1,1)} in



Alternating Projections: T = PAPB

(i) IS NOT (Fix T , ε)-firmly nonexpansive on A for any ε

(ii) IS (S, ε)-firmly nonexpansive on A for

(S, ε) = ({(0, 0)}, 0) (S, ε) = ({(1, 1)}, 0) (S, ε) = ({a∗}, 1)
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Regularity at the fixed point set

Basic Lemma
Let T : D ⇒ E for D ⊂ E and let S ⊂ Fix T ⊂ ri D. Define
Sδ := δB + S ⊂ D for δ ∈ [0, δ) fixed. Suppose

(a) T is (S, ε)-firmly nonexpansive on Sδ, and

(b) there exists λ > 0 such that T satisfies

‖x−x+‖ ≥ λdist(x ,S) ∀ x+ ∈ Tx , ∀ x ∈ Sδ\
(
Sδ ∩ (Fix T + δB)

)
.

(1)
Then, for all x ∈ Sδ \

(
Sδ ∩ (Fix T + δB)

)
dist (x+,Fix T ) ≤

√
1 + ε− λ2 dist(x ,S) ∀ x+ ∈ Tx . (2)



(sub) Linear Convergence
Let T : D ⇒ D for D ⊂ E and let S ⊂ Fix T ⊂ ri D be closed and
nonempty. Define Sδ := (δB + S) ∩ D. Suppose that for γ ∈ [0,1)
fixed and for all δ > 0 small enough, there is a triplet
(ε, δ, λ) ∈ R+ × [0, γδ]× (

√
ε,
√
ε+ 1] such that

(a) T is (S, ε)-firmly nonexpansive on Sδ and

(b) ‖x −x+‖ ≥ λdist(x ,S) ∀x+ ∈ Tx , ∀x ∈ Sδ \
(
Sδ ∩ (Fix T + δB)

)
.

Then for any x0 close enough to S the iterates xk+1 ∈ T (xk ) satisfy
dist(xk ,Fix T )→ 0 as k →∞.



Condition (a) is relatively easy to verify. What about (b)?

The key insight into condition (b) is the connection to metric
SUBregularity of set-valued mappings. This approach to the study of
algorithms has been advanced by several authors [Pennanen,
Klatte&Kummer, Aragón&Geoffroy, Dontchev&Rockafellar]



(strong) Metric (sub)-Regularity

(i) The mapping Φ : E ⇒ Y is called metrically regular at of order w
x for y if there is a constant κ > 0 together with neighborhood U
of x and V of y such that

dist
(
x ,Φ−1(y)

)
≤ κdistw (y ,Φ(x)) ∀(x , y) ∈ U × V . (3)

The regularity modulus is the infimum of those constants κ > 0
such that (3) holds.

(ii) The mapping Φ : E ⇒ Y is called metrically subregular of order
w at x for y if (x , y) ∈ gph Φ and there is a constant κ > 0 and
neighborhoods U of x and V of y such that

dist
(
x ,Φ−1(y)

)
≤ κdistw (y ,Φ(x) ∩ V ) ∀ x ∈ U. (4)

The subregularity modulus is the infimum of those constants
κ > 0 such that (4) holds.



(sub) Linear Convergence with Metric Subregularity
Let T : D ⇒ D for D ⊂ E, Φ := T − Id and let S ⊂ Fix T ⊂ ri D be
closed and nonempty. Suppose that, for any δ > 0 small enough,
there are γ ∈ (0,1), w ∈ (0,1], a nonnegative sequence of scalars
(εi )i∈N and a constant κ > 0, such that, for all i ∈ N,
Sδ :=

(
δB + S

)
∩ D,

1√
εi + 1

≤ κ inf
x∈S

γ iδ\((Fix T +γ i+1δB)∩S
γ iδ)

{
inf

x+∈Tx
‖x+ − x‖w−1

}
<

1
√
εi
,

(5)
and
(a) T is (S, εi )-firmly nonexpansive on Sγ iδ and

(b) dist
(
x ,Φ−1(0)

)
≤ κdistw (0,Φ(x)) ∀x ∈

Sγ iδ \
((

Fix T + γ i+1δB
)
∩ Sγ iδ

)
.



(sub) Linear Convergence with Metric Subregularity
Then, for any x0 ∈ Sδ, the iterates x j+1 ∈ T (x j ) converge to Fix T
with

dist
(

x j+1,Fix T
)
≤
√

1 + εi −
(

1
κi

)2
dist

(
x j ,S

)
(6)

for all x j ∈ Sγ iδ \
((

Fix T + γ i+1δB
)
∩ Sγ iδ

)
where

κi := κ inf
x∈S

γ iδ\((Fix T +γ i+1δB)∩S
γ iδ)

{
inf

x+∈Tx
‖x+ − x‖w−1

}
. (7)

In particular, if w = 1, then convergence is at least linear with rate

bounded above by
√

1 + ε−
( 1
κ

)2
where ε := supk {εk}.
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Projection algorithms for feasibility

Regularity of sets

(i) A nonempty set Ω ⊂ E is (ε, δ)-subregular at x̂ with respect to S ⊂ E if

〈v , x − y〉 ≤ ε ‖v‖ ‖x − y‖ (8)

holds for all y ∈ Bδ(x̂) ∩ Ω, x ∈ S ∩ Bδ(x̂), v ∈ Nprox
Ω (y). The set Ω is

said to be (ε, δ)-subregular at x̂ if S = {x̂}.

(ii) If S = Ω in (i) then the set Ω is said to be (ε, δ)-regular at x̂ .

(iii) A nonempty (locally) closed set Ω ⊂ E is Clarke regular at a point x ∈ Ω
if, for all ε > 0, ∃ δ > 0 such that z ∈ Bδ(x̂) and x ∈ Ω ∩ Bδ(x̂), and any
y ∈ PΩ(z), 〈

x − x̂ , z − y
〉
≤ ε‖x − x̂‖‖z − y‖.

(iv) If, for all ε > 0, there exists a δ > 0 such that (8) holds for all
y , x ∈ Bδ(x̂) ∩ Ω and v ∈ Nprox

Ω (y), then Ω is said to be super-regular.

(v) A nonempty (locally) closed set Ω ⊂ E is prox-regular at a point x ∈ Ω if
the projector PΩ is single-valued in a vicinity of x .



Set regularity relations

(i) {(ε, δ)− subregular sets} ⊃ {(ε, δ)− regular sets}

(ii) {(ε, δ)− regular sets} ⊃ {Clarke regular sets}

(iii) {Clarke regular sets} ⊃ {super-regular sets}

(iv) {super-regular sets } ⊃ {prox-regular sets}

(v) {prox-regular sets } ⊃ {closed convex sets}



A more recent definition of 0-Hölder regular sets (relative to some
other set) developed by Noll&Rondepierre (2015) satisfies

{0-Hölder regular sets} ⊃ {(ε, δ)− regular sets}

but haven’t worked out the relation to {(ε, δ)}-subregular sets yet.



Projectors and reflectors onto (ε, δ)-subregular sets
Let Ω ⊂ E be nonempty closed and (ε, δ)-subregular at x̂ with respect
to S ⊆ Ω ∩ Bδ(x̂) and define

U :=
{

x ∈ E
∣∣PΩx ⊂ Bδ(x̂)

}
. (9)

(i) The projector PΩ is (S, ε̃1)-nonexpansive on U where
ε̃1 := 2ε+ ε2.

(ii) The projector PΩ is (S, ε̃2)-firmly nonexpansive on Bδ(x̂) where
ε̃2 := 2ε+ 2ε2.

(iii) The reflector RΩ is (S, ε̃3)-nonexpansive on Bδ(x̂) where
ε̃3 := 4ε+ 4ε2.



Regularity of collections of sets

Linearly focusing collections of sets
The collection {Ω1,Ω2} of closed subsets of E is said to be Ω1-weakly linearly
focusing at x when PΩ1 PΩ2 x 3 x and there is a neighborhood U of x and a
constant κ such that, for all x ∈ U,

dist (x ,E1) ≤ κ dist (x ,PΩ1 PΩ2 x) (10)

where E1 := {e ∈ Ω1 |PΩ1 PΩ2 e 3 e }. The collection is said to be weakly
linearly focusing (no mention of Ω1 or Ω2) at (x1, x2) when
(PΩ1 PΩ2 x1,PΩ2 PΩ1 x2) 3 (x1, x2) and there is a neighborhood U of (x1, x2)
and a constant κ such that, for all (x1, x2) ∈ U,

dist ((x1, x2) , (E1,E2)) ≤ κ ‖dist (x1,PΩ1 PΩ2 x) , dist (x2,PΩ2 PΩ1 x)‖ . (11)

where E2 := {f ∈ Ω2 |PΩ2 PΩ1 e 3 e }.
The collection is said to be strongly linearly focusing at x when x ∈ Ω1 ∩ Ω2

and there is a neighborhood U of (x , x) and a constant κ such that, for all
x ∈ U (11) holds. The infimum of all κ such that (11) holds is called the
(weak/strong) focusing modulus.



{Ω1,Ω2} intersect transversally
=⇒

{Ω1,Ω2} is linearly regular at x ∈ Ω1 ∩ Ω2

=⇒
{Ω1,Ω2} is locally linearly regular at x ∈ Ω1 ∩ Ω2

⇐⇒
{Ω1,Ω2} is strongly linearly focusing at x

⇐⇒
ψ := T− Id is metrically subregular at (x , x ,0,0) ∈ gphψ (x , x)

=⇒
Φ := T − Id is metrically subregular at (x ,0) ∈ gph Φ (x , x)

⇐⇒
{Ω1,Ω2} is Ω1-weakly linearly focusing at x

where T := (PΩ1PΩ2 ,PΩ2PΩ1 ) and T := PΩ1PΩ2 .



(sub) Linear Convergence of Alternating Projections
Let TAP : A ⇒ A := PAPB for A,B closed, ΦAP := TAP − Id and let
x ∈ E := {e ∈ A |PAPBe 3 e}. Suppose that, for any δ > 0 small
enough, there are γ ∈ (0,1) and a pair (ε, κ) > 0 such that

1√
ε+ 1

≤ κ < 1√
ε
, (12)

and
(a) T is ({x}, ε)-firmly nonexpansive on δB(x) ∩ A and

(b) (A,B) is A-weakly linearly focusing at x .

Then, for any x0 ∈ δB(x) ∩ A, the iterates x j+1 ∈ Tx j converge

linearly to E with rate
√

1 + ε−
( 1
κ

)2
.



Alternating Projections: TAP := PAPB

Alternating projections converges locally linearly to Fix TAP , with
quantifiable rates and regions, in the following instances:

(i) any two lines in Rn whether they intersect or not.

(ii)

2



Optimization
Douglas-Rachford: TDR := proxf1

(
2 proxf2 − Id

)
− proxf2 + Id

Let W := aff{xk}k∈N. The Douglas-Rachford algorithm converges
locally linearly to Fix TDR ∩W with quantifiable rates and regions, in
the following instances:

(i) f1 and f2 are the indicator functions of sets in Rn with
super-regular boundaries and the sets intersect essentially
transversally: T1(x) + T2(x) = W . (For example, any two
intersecting lines in Rn.)

(ii) f1 and f2 are convex, piecewise linear-quadratic functions and
that Fix TDR ∩W ∩ O = {x}, i.e. is an isolated point. The rate of
linear convergence is bounded above by

√
1− κ, where

κ = c−2 > 0, for c a constant of metric subregularity of TDR − Id
at x for the neighborhood O.



Proof logic.
convex, plc =⇒ single-valued polyhedral prox-operators =⇒ TDR
is polyhedral.
TDR polyhedral + Fix TDR ∩W ∩ O an isolated point =⇒ metric
subregularity [Dontchev& Rockafellar, Propositions 3I.1 and 3I.2]. 2
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Application: phase retrieval

Phase retrieval
Given

I |(Ax)j |2 = bj for bj ∈ R+ (j = 1,2, . . . ,m) given by

I some qualitative constraint (x ∈ Rn
+ or supp x ⊂ D)

Find



Application: phase retrieval

Phase retrieval

[L. 2012]



Application: sparse affine feasibility
[Hesse-L.-Neumann, 2014]

minimize
x∈As

1
2

dist (x ,B)2

where As :=
{

x ∈ Rn∣∣ ‖x‖0 ≤ s
}

and B :=
{

x ∈ Rn∣∣ Mx = p
}
.

I Local convergence of alternating projections and Douglas-Rachford
I Global convergence of alternating projections under the assumption:

M is full rank and
(1− δ2s) ‖x‖2

2 ≤
∥∥M†Mx

∥∥2
2 ∀ x ∈ A2s

(13)

Denote AJ := span {ei | i ∈ J} for
J ∈ J2s :=

{
J ∈ 2{1,2,...,n}

∣∣∣ J has 2s elements
}

. Then M satisfies (13)

with δ2s ∈ [0, α−1
α

) for some fixed s > 0 and α > 1 =⇒

(∀J ∈ J2s) AJ ∩ ker(M) = {0}.



Image denoising/deconvolution

minimize
u∈Rn

J(u) + ρmax{Fε(Au)}.

where J is convex, piecewise linear-quadratic, A : Rn → Rn , and

Fε : Rn → 2Rn
:= v 7→ (f1(v)− ε1, f2(v)− ε2, . . . , fM(v)− εM)T (14)

is convex quadratic.

Solve with ADMM = Douglas-Rachford on the dual.



minimize
u∈Rn

J(u) + ρmax{Fε(Au)}.

where J is convex, piecewise linear-quadratic, A : Rn → Rn , and

Fε : Rn → 2Rn
:= v 7→ (f1(v)− ε1, f2(v)− ε2, . . . , fM(v)− εM)T (15)

is convex quadratic.
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