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Smooth optimization :
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@ Stopping test : ———
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@ Convergence to critical point x/ — x*, Vf(x*) =0

How about the non-smooth case 7
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Arrange :

@ f smooth outside blue Talweg.
o |[Vf(x)|| > 1 for x outside active manifold (= blue Talweg)
@ (0,0) is minimum

@ f may have concave features near minimum.

°

Numerical method bound to never hit Talweg.

No subdifferential can give valid stopping test

10f ()- = inf{llg] : & € OF(x)} £ 0



Nesterov's variant of Rosenbrock function :
f(x) = %(xl —2)2 4 |x — 2x2 + 1
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Non-smooth BFGS
Glirbiizbalaban & Overton 2011, Lewis & Overton 2008-13




0 € 0f(x*)+ €B
Approximate optimality
fails, too
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Consequences : Fall back on other stopping criteria like

@ Linesearch gives only marginal progress.

@ Tangent program finds no trial steps which give sufficient
progress.

@ Progress tests like
I+ — x|

L+ ]|

[F( 1) — £()]
1+ [F(x)|

< tol, < tol

But are those justified ?

@ Why not use stopping test of tangent program?



(Lewis 2003, Hare & Lewis 2003 — 2007)
The proximal point method detects the active manifold.




(Lewis 2003, Hare & Lewis 2003 — 2007)
The proximal point method detects the active manifold.

Unfortunately, proximal point method is not a method.

Tangent program

min f(y) + \illy — x/2
min £(y) + Xy =]

not practical
But can compute points arbitrarily close to active manifold.

Cannot use stopping test of tangent program :
0€ () + N0 — X)) +eB
————

—0



pproximate stopping
fails, too
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Observe :

@ Principled difference between e.g. augmented Lagrangian
method in smooth optimization, and proximal-point method in
non-smooth optimization.

@ Both run a NLP to optimality to compute a single iterate x/,
which is impossible.

@ BUT, in the case of the AL we can stop early at an
approximate solution based on an algorithmic criterion and still
assure convergence.

= can make AL a practical method.

@ This is in general not possible with the non-smooth proximal
point method.



Are there rigorous methods with convergence and stopping ?

Convex bundle method (Lemaréchal).
BT-methods (Zowe 1970s)

Linesearch bundle method (Mifflin 1970s)
Non-convex bundle method (since 2005)

Bundle method for composite convex functions
(Ruszczynski 2007, Sagastizabal-Hare 2009)

Today : Bundle trust-region method



Observe :

@ Convex combination g;° of subgradients at trial points y% around
serious iterates x/ converges to 0 :

j
c i’ .
g = Y Mggy =0, &g €df(yd) as(j— o),
j/zl,kEIj/

4 . . . . Ha
y"' trial points at serious iterates x/

(g = aggregate subgradient at x/)

@ Therefore need Of to be upper semi-continuous, closed and convex
to be able to conclude 0 € 9f (x*).

@ Also need that minimum x* satisfies 0 € 9f (x*).

@ Usually gxj = VFf(y%). No need to compute df nor f'(x,d).



Can have a look what SQP does
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Observe :

@ SQP does not try to reach the active manifold. It goes for its
linearization, which is computable.

@ SQP generates a convex combination of gradients at trial
points which converge to 0.

@ Minimize max;¢; fi(x) :

minimize ¢t
subject to  fi(x) < t,iel

o KKT:

Tttt = () + X% gty )= (9)

—> Clarke subdifferential



What is known about non-smooth trust-regions ?



Bundling included

@ Ruszczynski 2007. Convex bundle trust-region method.

@ Apkarian, Noll, Ravanbod 2015. Non-convex bundle trust-regions.

Without bundling

@ Y. Yuan 1983. Trust-region method for f = go F, g convex.
Tangent program

,min_ 8(F() + F/(d)y =)

@ 95% either re-discover Yuan, or blunder because they believe that
Cauchy point works.

@ Some work uses smooth approximations (& la Nesterov).



Hiriart-Urruty, Lemaréchal : Failure of steepest descent
f(x) = max{fo(x), fr1(x), fra(x)}

fo(X) = —100, fj:]_(X) = 4+2x7 + 3x2, f:tz(X) = 45x1 + 2x5.
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Consequences :

@ Steepest descent with linesearch fails.
@ Other gradient-oriented descent methods fail, too.

@ Methods which vary the necessary optimality conditions also
fail.

@ Cauchy step in trust-regions fails, hence the usual strategy to
prove convergence fails.



There are many temptations to go astray :

@ Steepest descent with fixed or pre-defined steplengths works
for convex f.

@ Even without convexity : steepest descent convenient to
define. Leads to nice Fenchel duality.

@ Complexity theory harps on methods which work in the convex
case, but fail when combined with globalization techniques
such as linesearch or trust-regions.



Consequences for trust-regions :

@ Dennis, Li, Tapia 1995. Axiomatic approach. Little scope due
to regularity assumptions.

@ Conn, Gould, Toint 2000. Believe that Cauchy point works.
Another consequence :

o Kurdyka-tojasiewicz convergence theory not really effective as
yet for non-smooth f.



Non-smooth bundle trust-region method



Want :

@ Approximate f locally by a simple (polyhedral) model like in
bundle method.
= Need cutting planes.

Tangent program should be CQP or even a LP.

Use standard trust-region management to control stepsize.

Prove convergence in the sense of subsequences.
—> Need some ersatz for the Cauchy point

Get a rigorous stopping test.



Model approach :



Definition

(Noll, Prot, Rondepierre 2008).

A function ¢ : R” x R” — R is called a first-order model of f : R” — R if
the following axioms are satisfied :

(M) &(:,x) is convex, ¢(x,x) = f(x), d(x,x) C Of(x)

(Mz2) f(y) < oy, x)+o(lly —x[) as y — x

(M3) limsup o(y',x") < ¢(y, x).

y' =y, x'—x

Definition
The model ¢ is called strict if

(M2) f(y) < ¢(y,x) +o(lly = x|) as y —x =0
uniformly on bounded sets

| A\

The model ¢ is called strong if
(M2) f(y) < é(y,x) +O(ly —x|[?) as y —x = 0
uniformly on bounded sets




Ist-order Taylor expansion

3y, x) = F(x) + VF(x) (v = x)

Standard model

¢ﬂ(y7x) = f(X) + fO(Xay - X)

f convex. Is its own strong model :

oy, x) =1f(y)

f = g o F composite convex. Natural strict model :

¢"(y,x) = g (F(x) + F'(x)(y — x))

f prox-regular :

oy, x) = f(y) + ply — x|I?



F(x)

o(+, x) ideal model

bk (-, x) working model

Y



Observe :
@ Every model ¢ of f gives rise to one bundle method.
— The more models, the more methods
@ Standard model ¢ not always strict.

@ f=goF, g convex, F class C* :
¢"(y,x) = g(F(x) + F'(x)(y — x))
@ Every lower Cl-function has a strict model.

— Upper envelope of downshifted tangents

@ Every upper Cl-function has a strict model.
— To wit, its standard model ¢? is strict.



Bundle trust-region method



®k(-, x) working model




F(x)

min
ly—xlI<R

Ok(yﬂx)



min ¢
1y i P40 %)
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¢(+, x) ideal model

f(x) A f

Y



¢(+, x) ideal model

Y



®k(-, x) working model

Y



¢r+1(+, x) working model

Y



F(x)

min
ly—xlI<R

CDkJrl(ysX)



min ¢
1y N (Y, )
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¢(+, x) ideal model




¢(+, x) ideal model

Y




®k+1(+, x) working model

Y



®k+2(+, x) working model

Y



F(x)

min
ly—xlI<R

C9k+2(y,~x)



F(x)

min_ Gksa(y, %)
ly—x[[<R
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¢(+, x) ideal model




¢(+, x) ideal model




®k+2(+, x) working model

Y



®k+3(+, x) working model

Y



F(x)

min
ly—xlI<R

C9k+3(y,~ X)



F(x)

min_ 6ksa(y, %)
ly—x[[<R
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¢(+, x) ideal model




¢kta(+, x) working model

Y



¢kta(+, x) working model

Y



F(x)

¢k+a(-, x) working model

Y



Observe :

Trust-region radius R can be fixed once and for all in convex
trust-region method (Ruszczynski 2007).

No longer possible without convexity, because ¢, approximates
¢, and not necessarily f.

Need the option to force smaller steps to get better agreement
between ¢ and f :
e reduce R™ = R/2

But at what stage should we reduce trust-region radius?
e should we always backtrack when null step?7?

Don't want to consent to backtracking too willingly, as this
leads to exceedingly small steps.



¢

Rt =R

Pk

) - ey ,x) 7
F0) = orlyFox)




Secondary test :

) =6 x)
f(x) — dk(y* . x)
_ model progress at y* had we already known the cutting plane
B progress predicted by working model ¢ (-, x) at y*

Decision :

Ry if px <7 and py <~
Riy1 =

SR if ok >7 and p < v



F(x)

min
ly—xlI<R

C9k+2(y,~x)
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recycle
planes

Rt =2R

yes

start

serious
iterate

stopping

exit

outer loop

no
working cutting plane

model

no

pruning

inner loop




Tangent program :

mi.n ¢k(yvxj)
ly—x|<R

Acceptance test :

f(x) — f(y%) actual progress

?
= - — = >
Pk f(xd) — ér(y*,x)  model predicted progress — 7

Pruning :

Can limit number of cuts to n+ 1 by Carathéodory's theorem.

Aggregation a la Kiwiel is open problem.

Trial step : Accept neighbouring points z*

F(9) = dn(2*, ¥1) > 0/ (F(d) = duly*, )



Suppose {x € R" : f(x) < f(x!)} is bounded and f has a strict
ideal model ¢. Let x/ be the sequence of serious iterates generated
by the bundle trust-region method. Then every accumulation point
x* of xJ is critical.

Stopping test :
min{]|g |l llgyll} =0
Here :
If R was never reduced during jth inner loop, then j/ < j is the

largest index of an inner loop, where such a reduction occurred for
the last time. Otherwise j/ = j.



Observe :

@ For strong model ¢ just take aggregate at acceptance :
g7 || < €. (Applies to composite convex functions).

@ Rigorous stopping test justifies stopping when tangent
program gives only slight progress.

@ As compared to bundle method proof gives new challenges.

@ Even for convex f convergence to single limit not assured.

@ y¥ ersatz for Cauchy point.



Can we save the Cauchy point 7



Observe :
o If f is almost everywhere strictly differentiable, then can
choose z¥ as point of strict differentiability near y*.

o If in addition ¢! is used, bundle trust-region method coincides
with its classical alter ego based on first-order model :

min f(xj) + Vf(xj)T(y - Xj)
ly—x/lI<R

@ Then y* = Cauchy point.
@ But only justified if ¢? strict.



Proposition

f upper C1 = f has strict standard model ¢*.

Proof. Upper C! at x = Ve > 036 > 0 Vx,x + td € B(x, ),
|d]| =1

F(x + td) — £(x)
t

(Daniilidis & Georgiev 2004), (Ngai, Luc, Thera 2000).
Strictness at X means the formally weaker :

< —fO%x,—d) + e

F(x + td) — f(x)

. < fOx,d) +e




lower C!

upper C!



Example. Upper C!-function with non smoothness near minimum.

Upward kinks accumulate at minimum
No local minima on curve



Example of upper-C* function :

iel

1
flx) = fs(x)—l—/o min f;(x, t) dt

1
= fs(x)+ min / fo(r)(x, t) dt
0

oello1]
is upper C1 if first-order partial derivatives with respect to x are
continuous.

M.N. Dao, J. Gwinner, D. Noll, N. Ovcharova. Nonconvex bundle
method with application to a delamination problem. arXiv



Observe :
e Lightning function (Klatte & Kummer 2002) has strict ¢, but
is not upper-C*.

@ Suppose x = serious, zK = trial step. Then ¢! cutting plane
has subgradient g € 0f (x) which attains maximum

fo(x,z" —x) = gT(z" — x).

e f strictly differentiable at x == only one ¢! cutting plane
—> method becomes classical trust-region method.

e Functions with strict standard model ¢! can be optimized as if
they were smooth. Cauchy point can be saved.

@ Not possible for convex non-smooth optimization.



Applications with upper-C! :

@ Delamination of composite materials (Dao, Gwinner, Noll,
Ovcharova 2014). arXiv.

@ Parametric robust feedback control design (Apkarian, Dao,
Noll 2014, IEEE TAC).

@ Branch and bound algorithm for the robustness analysis of
uncertain systems (Apkarian, Noll, Ravanbod 2015).

Favorable use of || - ||« instead of || - ||2.



Concluding remarks :

o Investigate possibilities for trial step z*.
— include second-order information if available
= non-convex tangent QP
— non-smooth BFGS.

@ For f only locally Lipschitz use e-model, where
O19(x,x) C Of (x) + €B.
— strict e-model always exists
— convergence to x* with 0 € 9f (x*) + €B.

@ Aggregation a la Kiwiel.






