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Smooth optimization :

min
x∈Rn

f (x)

Stopping test :
krf (x j)k
1 + |f (x j)| < ✏

Convergence to critical point x j ! x⇤, rf (x⇤) = 0

How about the non-smooth case ?



f (x)

x1

x2



Arrange :

f smooth outside blue Talweg.
krf (x)k � 1 for x outside active manifold (= blue Talweg)
(0, 0) is minimum
f may have concave features near minimum.
Numerical method bound to never hit Talweg.

No subdifferential can give valid stopping test

k@f (x j)k� = inf{kgk : g 2 @f (x j)} 6! 0



Nesterov’s variant of Rosenbrock function :
f (x) = 1

4 (x1 � 2)2 + |x2 � 2x2
1 + 1|

Nesterov−Chebyshev−Rosenbrock, first variant
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Nesterov−Chebyshev−Rosenbrock, second variant
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Figure 1: Contour plots for Nesterov’s first (left) and second (right) nons-
mooth Chebyshev-Rosenbrock functions f̂ and f respectively, with n = 2.
Points connected by line segments show the iterates generated by the BFGS
method (see Section 3) initialized at 7 di�erent randomly generated start-
ing points. For the first variant f̂ , convergence always takes place to the
only Clarke stationary point: the global minimizer x⇤ = [1, 1]T . For the
second variant f , some runs of BFGS generate iterates that approximate
the nonminimizing Clarke stationary point [0,�1]T while others converge to
the minimizer [1, 1]T .

3

Non-smooth BFGS
Gürbüzbalaban & Overton 2011, Lewis & Overton 2008-13



f (x)

x1

x2

0 ∈ ∂f (x∗) + εB
Approximate optimality
fails, too



Consequences : Fall back on other stopping criteria like

Linesearch gives only marginal progress.
Tangent program finds no trial steps which give sufficient
progress.
Progress tests like

kx j+1 � x jk
1 + kx jk < tol,

|f (x j+1) � f (x j)|
1 + |f (x j)| < tol

But are those justified ?

Why not use stopping test of tangent program ?



Theorem

(Lewis 2003, Hare & Lewis 2003 – 2007)
The proximal point method detects the active manifold.

.



Theorem

(Lewis 2003, Hare & Lewis 2003 – 2007)
The proximal point method detects the active manifold.

Unfortunately, proximal point method is not a method.
Tangent program

min
y2Rn

f (y) + �
j

ky � x jk2

not practical
But can compute points arbitrarily close to active manifold.
Cannot use stopping test of tangent program :

0 2 @f (x j+1) + �
j

(x j+1 � x j)
| {z }

!0

+✏B



f (x)

x1

x2

Approximate stopping
fails, too



Observe :

Principled difference between e.g. augmented Lagrangian
method in smooth optimization, and proximal-point method in
non-smooth optimization.
Both run a NLP to optimality to compute a single iterate x j ,
which is impossible.
BUT, in the case of the AL we can stop early at an
approximate solution based on an algorithmic criterion and still
assure convergence.

=) can make AL a practical method.
This is in general not possible with the non-smooth proximal
point method.



Are there rigorous methods with convergence and stopping ?

Convex bundle method (Lemaréchal).
BT-methods (Zowe 1970s)
Linesearch bundle method (Mifflin 1970s)
Non-convex bundle method (since 2005)
Bundle method for composite convex functions
(Ruszczyński 2007, Sagastizábal-Hare 2009)

Today : Bundle trust-region method



Observe :

Convex combination g⇤
j

of subgradients at trial points ykj around
serious iterates x j converges to 0 :

g⇤
j

=
jX

j

0=1,k2Ij0

C
�

kj

0g
kj

0 ! 0, g
kj

0 2 @f (ykj

0
) as (j ! 1),

ykj

0
trial points at serious iterates x j

0

(g⇤
j

= aggregate subgradient at x j)

Therefore need @f to be upper semi-continuous, closed and convex
to be able to conclude 0 2 @f (x⇤).

Also need that minimum x⇤ satisfies 0 2 @f (x⇤).

Usually g
kj

= rf (ykj). No need to compute @f nor f 0(x , d).



Can have a look what SQP does



f (x)

x1

x2



Observe :

SQP does not try to reach the active manifold. It goes for its
linearization, which is computable.
SQP generates a convex combination of gradients at trial
points which converge to 0.
Minimize max

i2I

f
i

(x) :

minimize t
subject to f

i

(x)  t, i 2 I

KKT :

r(t,x)L(t, x , �) =

✓
1
0

◆
+
X

i2I

C
�

i

✓
�1

rf
i

(x)

◆
=

✓
0
0

◆

=) Clarke subdifferential



What is known about non-smooth trust-regions ?



Bundling included

Ruszczyński 2007. Convex bundle trust-region method.

Apkarian, Noll, Ravanbod 2015. Non-convex bundle trust-regions.

Without bundling

Y. Yuan 1983. Trust-region method for f = g � F , g convex.
Tangent program

min
ky�x

jkR

g(F (x j) + F 0(x j)(y � x j))

95% either re-discover Yuan, or blunder because they believe that
Cauchy point works.

Some work uses smooth approximations (à la Nesterov).



Hiriart-Urruty, Lemaréchal : Failure of steepest descent

f (x) = max{f0(x), f±1(x), f±2(x)}

f0(x) = �100, f±1(x) = ±2x1 + 3x2, f±2(x) = ±5x1 + 2x2.
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Consequences :

Steepest descent with linesearch fails.
Other gradient-oriented descent methods fail, too.
Methods which vary the necessary optimality conditions also
fail.
Cauchy step in trust-regions fails, hence the usual strategy to
prove convergence fails.



There are many temptations to go astray :

Steepest descent with fixed or pre-defined steplengths works
for convex f .
Even without convexity : steepest descent convenient to
define. Leads to nice Fenchel duality.
Complexity theory harps on methods which work in the convex
case, but fail when combined with globalization techniques
such as linesearch or trust-regions.
=) Nesterov’s dilemma



Consequences for trust-regions :

Dennis, Li, Tapia 1995. Axiomatic approach. Little scope due
to regularity assumptions.
Conn, Gould, Toint 2000. Believe that Cauchy point works.

Another consequence :

Kurdyka-Łojasiewicz convergence theory not really effective as
yet for non-smooth f .



Non-smooth bundle trust-region method



Want :

Approximate f locally by a simple (polyhedral) model like in
bundle method.

=) Need cutting planes.
Tangent program should be CQP or even a LP.
Use standard trust-region management to control stepsize.
Prove convergence in the sense of subsequences.

=) Need some ersatz for the Cauchy point
Get a rigorous stopping test.



Model approach :



Definition

(Noll, Prot, Rondepierre 2008).
A function � : Rn ⇥Rn ! R is called a first-order model of f : Rn ! R if
the following axioms are satisfied :
(M1) �(·, x) is convex, �(x , x) = f (x), @1�(x , x) ⇢ @f (x)
(M2) f (y)  �(y , x) + o(ky � xk) as y ! x
(M3) lim sup

y

0!y ,x0!x

�(y 0, x 0)  �(y , x).

Definition

The model � is called strict if
( bM2) f (y)  �(y , x) + o(ky � xk) as y � x ! 0

uniformly on bounded sets

The model � is called strong if
( eM2) f (y)  �(y , x) + O(ky � xk2) as y � x ! 0

uniformly on bounded sets



1st-order Taylor expansion

�(y , x) = f (x) + rf (x)T (y � x)

Standard model

�](y , x) = f (x) + f �(x , y � x)

f convex. Is its own strong model :

�(y , x) = f (y)

f = g � F composite convex. Natural strict model :

�n(y , x) = g
�
F (x) + F 0(x)(y � x)

�

f prox-regular :

�(y , x) = f (y) + µky � xk2



x

f (x) f

φ(·, x) ideal model

φk(·, x) working model



Observe :

Every model � of f gives rise to one bundle method.
=) The more models, the more methods

Standard model �] not always strict.

f = g � F , g convex, F class C 1 :

�n(y , x) = g(F (x) + F 0(x)(y � x))

Every lower C 1-function has a strict model.
=) Upper envelope of downshifted tangents

Every upper C 1-function has a strict model.
=) To wit, its standard model �] is strict.



Bundle trust-region method
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f (x) f
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f (x) f

min
‖y−x‖≤R

φk(y , x)

R
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f (x) f

min
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φk(y , x)

Ryk
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f (x) f

φ(·, x) ideal model

Ryk
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f (x) f

φk(·, x) working model

R
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f (x) f

φk+1(·, x) working model

R
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f (x) f

φ(·, x) ideal model
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f (x) f

φ(·, x) ideal model
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f (x) f

φ(·, x) ideal model

φk+1(·, x) working model

R
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f (x) f

φ(·, x) ideal model

φk+2(·, x) working model

R
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φ(·, x) ideal modelmin
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f (x) f

φ(·, x) ideal modelmin
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φk+2(y , x)

Ryk+2
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f (x) f

φ(·, x) ideal model

Ryk+2
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f (x) f

φ(·, x) ideal model

Ryk+2
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f (x) f

φ(·, x) ideal model

R
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f (x) f

φ(·, x) ideal model

φk+2(·, x) working model

R
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φ(·, x) ideal model

φk+3(·, x) working model

R
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φ(·, x) ideal modelmin
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f (x) f

φ(·, x) ideal model

Ryk+3
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f (x) f

φ(·, x) ideal model

φk+4(·, x) working model

R
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f (x) f

φ(·, x) ideal model

φk+4(·, x) working model

R
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φk+4(·, x) working model
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Observe :

Trust-region radius R can be fixed once and for all in convex
trust-region method (Ruszczyński 2007).
No longer possible without convexity, because �

k

approximates
�, and not necessarily f .
Need the option to force smaller steps to get better agreement
between � and f :

• reduce R+ = R/2
But at what stage should we reduce trust-region radius ?

• should we always backtrack when null step ? ?
Don’t want to consent to backtracking too willingly, as this
leads to exceedingly small steps.



x

f

yk x

f

yk

R+ = R R+ = 1

2
R

e⇢
k

=
f (x) � �(yk , x)
f (x) � �

k

(yk , x)
??⇡ 1



Secondary test :

e⇢
k

=
f (x) � �(yk , x)
f (x) � �

k

(yk , x)

=
model progress at yk had we already known the cutting plane

progress predicted by working model �
k

(·, x) at yk

Decision :

R
k+1 =

8
<

:

R
k

if e⇢
k

< e� and ⇢
k

< �

1
2R

k

if e⇢
k

� e� and ⇢
k

< �
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f (x) f

φ(·, x) ideal modelmin
‖y−x‖≤R

φk+2(y , x)

R



x

f (x) f

φ(·, x) ideal modelmin
‖y−x‖≤R/2

φk+2(y , x)

R/2



R+ = 1

2
R

ρ̃ ≥ γ̃

R+ = R
cutting plane

pruning

inner loop

outer loop

working

model

tangent
program

trial
step

ρ ≥ γ
noyes

yes

no

yes

no

yes

no

stopping

ρ ≥ Γ

R+ = 2RR+ = R

recycle

planes
serious

iterate

exit

start



Tangent program :
min

ky�x

jkR

�
k

(y , x j)

Acceptance test :

⇢
k

=
f (x j) � f (yk)

f (x j) � �
k

(yk , x j)
=

actual progress
model predicted progress

?
� �

Pruning :

Can limit number of cuts to n + 1 by Carathéodory’s theorem.
Aggregation à la Kiwiel is open problem.

Trial step : Accept neighbouring points zk

f (x j) � �
k

(zk , x j) � ✓
⇣
f (x j) � �

k

(yk , x j)
⌘



Theorem

Suppose {x 2 Rn : f (x)  f (x1)} is bounded and f has a strict
ideal model �. Let x j be the sequence of serious iterates generated
by the bundle trust-region method. Then every accumulation point
x⇤ of x j is critical.

Stopping test :
min{kg⇤

j

k, kg⇤
j

0k} ! 0

Here :

If R was never reduced during jth inner loop, then j 0 < j is the
largest index of an inner loop, where such a reduction occurred for
the last time. Otherwise j 0 = j .



Observe :

For strong model � just take aggregate at acceptance :
kg⇤

j

k < ✏. (Applies to composite convex functions).
Rigorous stopping test justifies stopping when tangent
program gives only slight progress.
As compared to bundle method proof gives new challenges.
Even for convex f convergence to single limit not assured.
yk ersatz for Cauchy point.



Can we save the Cauchy point ?



Observe :

If f is almost everywhere strictly differentiable, then can
choose zk as point of strict differentiability near yk .
If in addition �] is used, bundle trust-region method coincides
with its classical alter ego based on first-order model :

min
ky�x

jkR

f (x j) + rf (x j)T (y � x j)

Then yk = Cauchy point.
But only justified if �] strict.



Proposition

f upper C 1 =) f has strict standard model �].

Proof. Upper C 1 at x̄ =) 8✏ > 0 9� > 0 8x , x + td 2 B(x̄ , �),
kdk = 1

f (x + td) � f (x)
t

 �f 0(x , �d) + ✏.

(Daniilidis & Georgiev 2004), (Ngai, Luc, Thera 2000).
Strictness at x̄ means the formally weaker :

f (x + td) � f (x)
t

 f 0(x , d) + ✏.

⇤



lower C 1

upper C 1



Example. Upper C 1-function with non smoothness near minimum.

.

Upward kinks accumulate at minimum
No local minima on curve



Example of upper-C 1 function :

f (x) = f
s

(x) +
Z 1

0
min
i2I

f
i

(x , t) dt

= f
s

(x) + min
�2I

[0,1]

Z 1

0
f�(t)(x , t) dt

is upper C 1 if first-order partial derivatives with respect to x are
continuous.

M.N. Dao, J. Gwinner, D. Noll, N. Ovcharova. Nonconvex bundle
method with application to a delamination problem. arXiv



Observe :

Lightning function (Klatte & Kummer 2002) has strict �], but
is not upper-C 1.
Suppose x = serious, zk = trial step. Then �] cutting plane
has subgradient g 2 @f (x) which attains maximum

f �(x , zk � x) = gT (zk � x).

f strictly differentiable at x =) only one �] cutting plane
=) method becomes classical trust-region method.
Functions with strict standard model �] can be optimized as if
they were smooth. Cauchy point can be saved.
Not possible for convex non-smooth optimization.



Applications with upper-C 1 :
Delamination of composite materials (Dao, Gwinner, Noll,
Ovcharova 2014). arXiv.
Parametric robust feedback control design (Apkarian, Dao,
Noll 2014, IEEE TAC).
Branch and bound algorithm for the robustness analysis of
uncertain systems (Apkarian, Noll, Ravanbod 2015).

Favorable use of k · k1 instead of k · k2.



Concluding remarks :

Investigate possibilities for trial step zk .
=) include second-order information if available
=) non-convex tangent QP
=) non-smooth BFGS.

For f only locally Lipschitz use ✏-model, where
@1�(x , x) ⇢ @f (x) + ✏B.

=) strict ✏-model always exists
=) convergence to x⇤ with 0 2 @f (x⇤) + ✏B.

Aggregation à la Kiwiel.




