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1990s: wonderful decade both mathematically and recreationally

■ Many great hikes with Terry and Jim near Seattle and
Vancouver
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1987: Our first correspondence and my first invitation to UW

1988: I visited UW for the summer and started a long
collaboration with Jim Burke

1990s: wonderful decade both mathematically and recreationally

■ Many great hikes with Terry and Jim near Seattle and
Vancouver

■ Cross country skiiing with Terry and others near Jasper:
Terry’s kindness and patience saved me from a potentially
very bad situation

■ Jim, Adrian and I made much use of the Bible (Variational
Analysis by RTR and RJBW) in our work on eigenvalue
optimization

Hard to believe Terry is 80!

Just a matter of units: he may be 80 in Fahrenheit but in Celsius
he is only 27!
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For A ∈ C
n×n, the field of values (or numerical range) of A is

W (A) = {v∗Av : v ∈ C
n, ‖v‖2 = 1} ⊂ C.
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W (A) = {v∗Av : v ∈ C
n, ‖v‖2 = 1} ⊂ C.

Clearly
W (A) ⊇ σ(A)

where σ denotes spectrum.
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W (A) = {v∗Av : v ∈ C
n, ‖v‖2 = 1} ⊂ C.

Clearly
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where σ denotes spectrum.

If AA∗ = A∗A, then

W (A) = conv σ(A).
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For A ∈ C
n×n, the field of values (or numerical range) of A is

W (A) = {v∗Av : v ∈ C
n, ‖v‖2 = 1} ⊂ C.

Clearly
W (A) ⊇ σ(A)

where σ denotes spectrum.

If AA∗ = A∗A, then

W (A) = conv σ(A).

Toeplitz-Haussdorf Theorem: W (A) is convex for all A ∈ C
n×n.
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Let

J =

[

0 1
0 0

]

: W (J) is a disk of radius 0.5
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: W (D) is a line segment
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Let

J =

[

0 1
0 0

]

: W (J) is a disk of radius 0.5

B =

[

1 2
−3 4

]

: W (B) is an “elliptical disk”

D =

[

5 + i 0
0 5− i

]

: W (D) is a line segment

A = diag(J,B,D) : W (A) = conv (W (J),W (B),W (D))
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Let p = p(z) be a polynomial and let A be a square matrix.
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Let p = p(z) be a polynomial and let A be a square matrix.

M. Crouzeix conjectured in “Bounds for analytical functions of
matrices”, Int. Eq. Oper. Theory 48 (2004), that for all p and A,

‖p(A)‖2 ≤ 2 ‖p‖W (A).



Crouzeix’s Conjecture

Terry Rockafellar

Crouzeix’s
Conjecture

The Field of Values

Examples

Example, continued

Crouzeix’s
Conjecture

Crouzeix’s Theorem

Special Cases

The Extreme Points
of the Field of
Values
Johnson’s Algorithm
Finds the Extreme
Points

Variational Analysis
of the Crouzeix
Ratio

Nonsmooth
Optimization
of the Crouzeix
Ratio

Concluding Remarks

7 / 33

Let p = p(z) be a polynomial and let A be a square matrix.

M. Crouzeix conjectured in “Bounds for analytical functions of
matrices”, Int. Eq. Oper. Theory 48 (2004), that for all p and A,

‖p(A)‖2 ≤ 2 ‖p‖W (A).

The left-hand side is the 2-norm (spectral norm, maximum
singular value) of the matrix p(A).
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Let p = p(z) be a polynomial and let A be a square matrix.

M. Crouzeix conjectured in “Bounds for analytical functions of
matrices”, Int. Eq. Oper. Theory 48 (2004), that for all p and A,

‖p(A)‖2 ≤ 2 ‖p‖W (A).

The left-hand side is the 2-norm (spectral norm, maximum
singular value) of the matrix p(A).

The norm on the right-hand side is the maximum of |p(z)|
over z ∈ W (A). By the maximum modulus principle, this must
be attained on bd W (A), the boundary of W (A).
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Let p = p(z) be a polynomial and let A be a square matrix.

M. Crouzeix conjectured in “Bounds for analytical functions of
matrices”, Int. Eq. Oper. Theory 48 (2004), that for all p and A,

‖p(A)‖2 ≤ 2 ‖p‖W (A).

The left-hand side is the 2-norm (spectral norm, maximum
singular value) of the matrix p(A).

The norm on the right-hand side is the maximum of |p(z)|
over z ∈ W (A). By the maximum modulus principle, this must
be attained on bd W (A), the boundary of W (A).

If p = χ(A), the characteristic polynomial (or minimal
polynomial) of A, then ‖p(A)‖2 = 0 by Cayley-Hamilton, but
‖p‖W (A) = 0 only if A = λI for λ ∈ C, so that W (A) = {λ}.
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Let p = p(z) be a polynomial and let A be a square matrix.

M. Crouzeix conjectured in “Bounds for analytical functions of
matrices”, Int. Eq. Oper. Theory 48 (2004), that for all p and A,

‖p(A)‖2 ≤ 2 ‖p‖W (A).

The left-hand side is the 2-norm (spectral norm, maximum
singular value) of the matrix p(A).

The norm on the right-hand side is the maximum of |p(z)|
over z ∈ W (A). By the maximum modulus principle, this must
be attained on bd W (A), the boundary of W (A).

If p = χ(A), the characteristic polynomial (or minimal
polynomial) of A, then ‖p(A)‖2 = 0 by Cayley-Hamilton, but
‖p‖W (A) = 0 only if A = λI for λ ∈ C, so that W (A) = {λ}.
If p(z) = z and A is a 2× 2 Jordan block with 0 on the diagonal,
then ‖p(A)‖2 = 1 and W (A) is a disk centered at 0 with radius
0.5, so the left and right-hand sides are equal.
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‖p(A)‖2 ≤ 11.08 ‖p‖W (A)

i.e., the conjecture is true if we replace 2 by 11.08.
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‖p(A)‖2 ≤ 11.08 ‖p‖W (A)

i.e., the conjecture is true if we replace 2 by 11.08.

“The estimate 11.08 is not optimal. There is no
doubt that refinements are possible which would
decrease this bound. We are convinced that our
estimate is very pessimistic, but to improve it
drastically (recall that our conjecture is that 11.08
can be replaced by 2), it is clear that we have to find
a completely different method.”

- Michel Crouzeix, “Numerical range and functional
calculus in Hilbert space”, J. Funct. Anal. 244 (2007).
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The conjecture is known to hold for certain restricted classes of
polynomials p of degree m or matrices A ∈ C

n×n:
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The conjecture is known to hold for certain restricted classes of
polynomials p of degree m or matrices A ∈ C

n×n:

■ p(z) = zm (from power inequality, Berger and Pearcy, 1966)
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The conjecture is known to hold for certain restricted classes of
polynomials p of degree m or matrices A ∈ C

n×n:

■ p(z) = zm (from power inequality, Berger and Pearcy, 1966)
■ n = 2 (Crouzeix, 2004)
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The conjecture is known to hold for certain restricted classes of
polynomials p of degree m or matrices A ∈ C

n×n:

■ p(z) = zm (from power inequality, Berger and Pearcy, 1966)
■ n = 2 (Crouzeix, 2004)
■ W (A) is a disk (Badea, 2004, based on von Neumann’s

inequality, 1951 and Okubo and Ando, 1975)
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The conjecture is known to hold for certain restricted classes of
polynomials p of degree m or matrices A ∈ C

n×n:

■ p(z) = zm (from power inequality, Berger and Pearcy, 1966)
■ n = 2 (Crouzeix, 2004)
■ W (A) is a disk (Badea, 2004, based on von Neumann’s

inequality, 1951 and Okubo and Ando, 1975)
■ n = 3 and A3 = 0 (Crouzeix, 2013)
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■ n = 2 (Crouzeix, 2004)
■ W (A) is a disk (Badea, 2004, based on von Neumann’s

inequality, 1951 and Okubo and Ando, 1975)
■ n = 3 and A3 = 0 (Crouzeix, 2013)
■ A is an upper Jordan block with a perturbation in the

bottom left corner (Choi and Greenbaum, 2012) or any
diagonal scaling of such A (Choi, 2013)
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■ W (A) is a disk (Badea, 2004, based on von Neumann’s
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■ n = 3 and A3 = 0 (Crouzeix, 2013)
■ A is an upper Jordan block with a perturbation in the

bottom left corner (Choi and Greenbaum, 2012) or any
diagonal scaling of such A (Choi, 2013)

■ A is diagonalizable with an eigenvector matrix having
condition number less than or equal to 2 (easy)
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The conjecture is known to hold for certain restricted classes of
polynomials p of degree m or matrices A ∈ C

n×n:

■ p(z) = zm (from power inequality, Berger and Pearcy, 1966)
■ n = 2 (Crouzeix, 2004)
■ W (A) is a disk (Badea, 2004, based on von Neumann’s

inequality, 1951 and Okubo and Ando, 1975)
■ n = 3 and A3 = 0 (Crouzeix, 2013)
■ A is an upper Jordan block with a perturbation in the

bottom left corner (Choi and Greenbaum, 2012) or any
diagonal scaling of such A (Choi, 2013)

■ A is diagonalizable with an eigenvector matrix having
condition number less than or equal to 2 (easy)

■ AA∗ = A∗A (then the constant 2 can be improved to 1).
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Based on R. Kippenhahn (1951), C.R. Johnson (1978) observed
that the extreme points of W(A) can be characterized as

ext W (A) = {zθ = v∗θAvθ : θ ∈ [0, 2π)}

where vθ is a normalized eigenvector corresponding to the largest
eigenvalue of the Hermitian matrix

Hθ =
1

2

(

eiθA+ e−iθA∗

)

.



The Extreme Points of the Field of Values

Terry Rockafellar

Crouzeix’s
Conjecture

The Field of Values

Examples

Example, continued

Crouzeix’s
Conjecture

Crouzeix’s Theorem

Special Cases

The Extreme Points
of the Field of
Values
Johnson’s Algorithm
Finds the Extreme
Points

Variational Analysis
of the Crouzeix
Ratio

Nonsmooth
Optimization
of the Crouzeix
Ratio

Concluding Remarks

10 / 33

Based on R. Kippenhahn (1951), C.R. Johnson (1978) observed
that the extreme points of W(A) can be characterized as

ext W (A) = {zθ = v∗θAvθ : θ ∈ [0, 2π)}

where vθ is a normalized eigenvector corresponding to the largest
eigenvalue of the Hermitian matrix

Hθ =
1

2

(

eiθA+ e−iθA∗

)

.

The proof uses a separating hyperplane argument.
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Based on R. Kippenhahn (1951), C.R. Johnson (1978) observed
that the extreme points of W(A) can be characterized as

ext W (A) = {zθ = v∗θAvθ : θ ∈ [0, 2π)}

where vθ is a normalized eigenvector corresponding to the largest
eigenvalue of the Hermitian matrix

Hθ =
1

2

(

eiθA+ e−iθA∗

)

.

The proof uses a separating hyperplane argument.

Thus, we can compute as many extreme points as we like.
Continuing with the previous example...
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The extreme points of W(A) lie in the union of 5 connected sets
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Define the Crouzeix ratio

f(p,A) =
‖p‖W (A)

‖p(A)‖2
.
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Define the Crouzeix ratio

f(p,A) =
‖p‖W (A)

‖p(A)‖2
.

The conjecture states that f(p,A) is bounded below by 0.5
independently of the polynomial degree m and the matrix
order n.
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Define the Crouzeix ratio

f(p,A) =
‖p‖W (A)

‖p(A)‖2
.

The conjecture states that f(p,A) is bounded below by 0.5
independently of the polynomial degree m and the matrix
order n.

The Crouzeix ratio f is

■ A mapping from pairs (p,A) to the reals.
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Define the Crouzeix ratio

f(p,A) =
‖p‖W (A)

‖p(A)‖2
.

The conjecture states that f(p,A) is bounded below by 0.5
independently of the polynomial degree m and the matrix
order n.

The Crouzeix ratio f is

■ A mapping from pairs (p,A) to the reals.
■ Not convex
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Define the Crouzeix ratio

f(p,A) =
‖p‖W (A)

‖p(A)‖2
.

The conjecture states that f(p,A) is bounded below by 0.5
independently of the polynomial degree m and the matrix
order n.

The Crouzeix ratio f is

■ A mapping from pairs (p,A) to the reals.
■ Not convex
■ Not defined if p(A) = 0



The Crouzeix Ratio

Terry Rockafellar

Crouzeix’s
Conjecture

Variational Analysis
of the Crouzeix
Ratio

The Crouzeix Ratio
The Gradient and
Subgradients of the
Crouzeix Ratio
Three Possible
Sources of
Nonsmoothness in f

Simplest Interesting
Case
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Define the Crouzeix ratio
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‖p‖W (A)

‖p(A)‖2
.

The conjecture states that f(p,A) is bounded below by 0.5
independently of the polynomial degree m and the matrix
order n.

The Crouzeix ratio f is

■ A mapping from pairs (p,A) to the reals.
■ Not convex
■ Not defined if p(A) = 0
■ Lipschitz continuous at all other points, but not necessarily

differentiable
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(ĉ, Â) is a
Nonsmooth
Stationary Point of
f

Partly Smooth
Functions
Partial Smoothness
of the Crouzeix
Ratio
Varying (c,A)
along V1 Direction

Varying (c,A)
along V2 Direction

Varying (c,A)
along U1 Direction

Varying (c,A)
along U2 Direction

Varying (c,A)

13 / 33

Define the Crouzeix ratio

f(p,A) =
‖p‖W (A)

‖p(A)‖2
.

The conjecture states that f(p,A) is bounded below by 0.5
independently of the polynomial degree m and the matrix
order n.

The Crouzeix ratio f is

■ A mapping from pairs (p,A) to the reals.
■ Not convex
■ Not defined if p(A) = 0
■ Lipschitz continuous at all other points, but not necessarily

differentiable
■ Semialgebraic
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“The chain rule on steroids”.
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“The chain rule on steroids”.

For the numerator, combine:
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“The chain rule on steroids”.

For the numerator, combine:

• the gradient or subgradients of max(| · |)
(recall its argument is p(zθ(A)) ∈ C)
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“The chain rule on steroids”.

For the numerator, combine:

• the gradient or subgradients of max(| · |)
(recall its argument is p(zθ(A)) ∈ C)

• the gradient of p(zθ(A)) w.r.t. the coefficients of p (easy)
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• the gradient or subgradients of max(| · |)
(recall its argument is p(zθ(A)) ∈ C)

• the gradient of p(zθ(A)) w.r.t. the coefficients of p (easy)

• the gradient of p(zθ(A)) w.r.t. A: recall zθ = v(Hθ)
∗Av(Hθ)
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• the gradient of p(zθ(A)) w.r.t. the coefficients of p (easy)

• the gradient of p(zθ(A)) w.r.t. A: recall zθ = v(Hθ)
∗Av(Hθ)

• the gradient or subgradients of v(Hθ), a normalized
eigenvector for λmax(Hθ), w.r.t. Hθ (gradient is “well known”)
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1
2

(

eiθA+ e−iθA∗
)

w.r.t. A (easy).
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For the denominator, combine:
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w.r.t. A (easy).

For the denominator, combine:

• the gradient or subgradients of the 2-norm (maximum singular
value) of a matrix (well known)
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“The chain rule on steroids”.

For the numerator, combine:

• the gradient or subgradients of max(| · |)
(recall its argument is p(zθ(A)) ∈ C)

• the gradient of p(zθ(A)) w.r.t. the coefficients of p (easy)

• the gradient of p(zθ(A)) w.r.t. A: recall zθ = v(Hθ)
∗Av(Hθ)

• the gradient or subgradients of v(Hθ), a normalized
eigenvector for λmax(Hθ), w.r.t. Hθ (gradient is “well known”)

• the gradient of Hθ =
1
2

(

eiθA+ e−iθA∗
)

w.r.t. A (easy).

For the denominator, combine:

• the gradient or subgradients of the 2-norm (maximum singular
value) of a matrix (well known)

• the gradient of the matrix polynomial p(A) w.r.t. A (involves
differentiating monomial terms Ak w.r.t. A, resulting in
Kronecker products).
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■ Ties for the max value of |p(z)| on bd W (A)
(the most important)
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(ĉ, Â) is a
Nonsmooth
Stationary Point of
f

Partly Smooth
Functions
Partial Smoothness
of the Crouzeix
Ratio
Varying (c,A)
along V1 Direction

Varying (c,A)
along V2 Direction

Varying (c,A)
along U1 Direction

Varying (c,A)
along U2 Direction

Varying (c,A)

15 / 33

■ Ties for the max value of |p(z)| on bd W (A)
(the most important)

■ A multiple eigenvalue

λmax (Hθ) = λmax

(

1

2

(

eiθA+ e−iθA∗

)

)

.

This can be excluded by assuming that bd W (A) does not
contain any line segment.
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■ Ties for the max value of |p(z)| on bd W (A)
(the most important)

■ A multiple eigenvalue

λmax (Hθ) = λmax

(

1

2

(

eiθA+ e−iθA∗

)

)

.

This can be excluded by assuming that bd W (A) does not
contain any line segment.

■ A multiple singular value σmax(p(A)).
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Optimize over real monic linear polynomials p(z) ≡ z + c and
real matrices with order n = 2. Let f(p,A) ≡ f(c, A), where
now f : R× R

2×2 → R.
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Let ĉ = 0 and Â =

[

0 2
0 0

]

, so W (Â) = D, the unit disk, and

hence f(ĉ, Â) = 1/2.
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[

0 2
0 0

]
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Sketch of proof: we have bd W (Â) = {ẑθ ≡ eiθ : θ ∈ [0, 2π)}, with
|ẑθ + ĉ| = 1 for all θ.



Simplest Interesting Case

Terry Rockafellar

Crouzeix’s
Conjecture

Variational Analysis
of the Crouzeix
Ratio

The Crouzeix Ratio
The Gradient and
Subgradients of the
Crouzeix Ratio
Three Possible
Sources of
Nonsmoothness in f

Simplest Interesting
Case
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Sketch of proof: we have bd W (Â) = {ẑθ ≡ eiθ : θ ∈ [0, 2π)}, with
|ẑθ + ĉ| = 1 for all θ. The numerator of f is the max over θ ∈ [0, 2π]
of |zθ(A) + c|, which are smooth at (ĉ, Â), so it’s regular and its
subdifferential is the convex hull of the gradients of |zθ(A) + c|, which
can be obtained by the ordinary chain rule.
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Theorem The Crouzeix ratio f is regular at (ĉ, Â), with
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can be obtained by the ordinary chain rule. The denominator is smooth
at (ĉ, Â) as σmax(Â) is simple.
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|ẑθ + ĉ| = 1 for all θ. The numerator of f is the max over θ ∈ [0, 2π]
of |zθ(A) + c|, which are smooth at (ĉ, Â), so it’s regular and its
subdifferential is the convex hull of the gradients of |zθ(A) + c|, which
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(ĉ, Â) is a
Nonsmooth
Stationary Point of
f

Partly Smooth
Functions
Partial Smoothness
of the Crouzeix
Ratio
Varying (c,A)
along V1 Direction

Varying (c,A)
along V2 Direction

Varying (c,A)
along U1 Direction

Varying (c,A)
along U2 Direction

Varying (c,A)

17 / 33

Corollary.
0 ∈ ∂f(ĉ, Â)
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Corollary.
0 ∈ ∂f(ĉ, Â)

Proof: the vectors inside the convex hull defined by θ = 0, π/2, π
and 3π/2 sum to zero.
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Corollary.
0 ∈ ∂f(ĉ, Â)

Proof: the vectors inside the convex hull defined by θ = 0, π/2, π
and 3π/2 sum to zero.

Actually, we knew this must be true as Crouzeix’s conjecture is
known to hold for n = 2, and hence (ĉ, Â) is a global minimizer
of f , but we expect that this derivation can be extended to
larger values of m, n, for which we don’t know whether the
conjecture holds.
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Recall from Lewis (2003) that a regular function h : Rk → R is
partly smooth at x w.r.t. a manifold M containing x if
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Recall from Lewis (2003) that a regular function h : Rk → R is
partly smooth at x w.r.t. a manifold M containing x if

■ its restriction to M is twice continuously differentiable near x
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Recall from Lewis (2003) that a regular function h : Rk → R is
partly smooth at x w.r.t. a manifold M containing x if

■ its restriction to M is twice continuously differentiable near x
■ the subdifferential ∂h is continuous on M near x
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partly smooth at x w.r.t. a manifold M containing x if

■ its restriction to M is twice continuously differentiable near x
■ the subdifferential ∂h is continuous on M near x
■ the subspace parallel to the affine hull of ∂h(x) is exactly the

subspace normal to M at x.
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Recall from Lewis (2003) that a regular function h : Rk → R is
partly smooth at x w.r.t. a manifold M containing x if

■ its restriction to M is twice continuously differentiable near x
■ the subdifferential ∂h is continuous on M near x
■ the subspace parallel to the affine hull of ∂h(x) is exactly the

subspace normal to M at x.

We refer to this normal subspace as the V-space for h at x, and
to its orthogonal complement, the subspace tangent to M at x,
as the U-space for h at x.
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■ the subdifferential ∂h is continuous on M near x
■ the subspace parallel to the affine hull of ∂h(x) is exactly the

subspace normal to M at x.

We refer to this normal subspace as the V-space for h at x, and
to its orthogonal complement, the subspace tangent to M at x,
as the U-space for h at x.

For y 6= 0 in the V-space, the mapping t 7→ h(x+ ty) is
necessarily nonsmooth at t = 0, while for y 6= 0 in the U-space,
t 7→ h(x+ ty) is differentiable at t = 0 as long as h is locally
Lipschitz.
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Recall from Lewis (2003) that a regular function h : Rk → R is
partly smooth at x w.r.t. a manifold M containing x if

■ its restriction to M is twice continuously differentiable near x
■ the subdifferential ∂h is continuous on M near x
■ the subspace parallel to the affine hull of ∂h(x) is exactly the

subspace normal to M at x.

We refer to this normal subspace as the V-space for h at x, and
to its orthogonal complement, the subspace tangent to M at x,
as the U-space for h at x.

For y 6= 0 in the V-space, the mapping t 7→ h(x+ ty) is
necessarily nonsmooth at t = 0, while for y 6= 0 in the U-space,
t 7→ h(x+ ty) is differentiable at t = 0 as long as h is locally
Lipschitz.

When h is convex, this is consistent with the usage of V-space
and U-space in Lemaréchal-Oustry-Sagastizábal (2000).
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Let

M =
{

(c ∈ R, A ∈ R
2×2) : W (A) is a disk centered at− c

}

The Crouzeix ratio f is partly smooth at (ĉ, Â) w.r.t. M.
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Let

M =
{

(c ∈ R, A ∈ R
2×2) : W (A) is a disk centered at− c

}

The Crouzeix ratio f is partly smooth at (ĉ, Â) w.r.t. M.

In the example just given, the affine hull of ∂f(ĉ, Â) (the
V-space) has dimension 2, with basis vectors

V1 =

(

0,

[

0 0
1 0

])

and V2 =

(

2,

[

1 0
0 1

])

.
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V-space) has dimension 2, with basis vectors

V1 =

(

0,

[

0 0
1 0

])

and V2 =

(

2,

[

1 0
0 1

])

.
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and U3 =
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[

1 0
0 1

])
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(
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−1 0
0 1

])

and U3 =

(

−1,

[

1 0
0 1

])

.

Let’s look at W (Â+ t∆A) and the Crouzeix ratio f(ĉ+∆c, Â+∆A)
for t ∈ [−1, 1] where (∆c,∆A) are given by V1, V2, U1, U2 and U3.



Varying (c, A) along V1 Direction

Terry Rockafellar

Crouzeix’s
Conjecture

Variational Analysis
of the Crouzeix
Ratio

The Crouzeix Ratio
The Gradient and
Subgradients of the
Crouzeix Ratio
Three Possible
Sources of
Nonsmoothness in f

Simplest Interesting
Case
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Left: superimposed W (Â+ t∆A) and −c = −(ĉ+ t∆c), where

∆c = 0 and ∆A =

[

0 0
1 0

]

, for several t ∈ [−1, 1].

Right: plot of Crouzeix ratio f(ĉ+ t∆c, Â+ t∆A) for t ∈ [−1, 1].
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Left: superimposed W (Â+ t∆A) and −c = −(ĉ+ t∆c), where

∆c = 2 and ∆A =

[
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0 1
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, for several t ∈ [−1, 1].

Right: plot of Crouzeix ratio f(ĉ+ t∆c, Â+ t∆A) for t ∈ [−1, 1].
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Left: superimposed W (Â+ t∆A) and −c = −(ĉ+ t∆c), where

∆c = 0 and ∆A =

[

0 1
0 0

]

, for several t ∈ [−1, 1].

Right: plot of Crouzeix ratio f(ĉ+ t∆c, Â+ t∆A) for t ∈ [−1, 1].
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Left: superimposed W (Â+ t∆A) and −c = −(ĉ+ t∆c), where

∆c = 0 and ∆A =

[
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0 1
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, for several t ∈ [−1, 1].

Right: plot of Crouzeix ratio f(ĉ+ t∆c, Â+ t∆A) for t ∈ [−1, 1].
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Left: superimposed W (Â+ t∆A) and −c = −(ĉ+ t∆c), where
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1 0
0 1

]

, for several t ∈ [−1, 1].

Right: plot of Crouzeix ratio f(ĉ+ t∆c, Â+ t∆A) for t ∈ [−1, 1].
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Chebfun (Trefethen et al, 2004-present), for efficiently
interpolating the boundary of W (A) to machine precision
accuracy using adaptive Chebyshev interpolation
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Chebfun (Trefethen et al, 2004-present), for efficiently
interpolating the boundary of W (A) to machine precision
accuracy using adaptive Chebyshev interpolation

BFGS (Broyden, Fletcher, Goldfarb, Shanno 1970), a standard
method for smooth optimization, which is also an extremely
reliable and efficient method to find local minimizers of
nonsmooth functions (Lewis-Overton, Math. Programming,
2013)



Experiments

Terry Rockafellar

Crouzeix’s
Conjecture

Variational Analysis
of the Crouzeix
Ratio

Nonsmooth
Optimization
of the Crouzeix
Ratio

Computational Tools

Experiments

Optimizing over
both p (deg.
m ≤ 4) and A

(n = 5)

Best Solution
Found: f(p,A) =
0.5000000002
For what (c, A) is
the Crouzeix ratio
f(c, A) = 0.5?

Concluding Remarks

27 / 33

We have run many experiments searching for local minimizers of
the Crouzeix ratio using BFGS.
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We have run many experiments searching for local minimizers of
the Crouzeix ratio using BFGS.

Several scenarios:
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We have run many experiments searching for local minimizers of
the Crouzeix ratio using BFGS.

Several scenarios:

■ Fix p with degree m, optimize over A with fixed order n
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We have run many experiments searching for local minimizers of
the Crouzeix ratio using BFGS.

Several scenarios:

■ Fix p with degree m, optimize over A with fixed order n
■ Fix A with order n, optimize over p with degree ≤ m
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We have run many experiments searching for local minimizers of
the Crouzeix ratio using BFGS.

Several scenarios:

■ Fix p with degree m, optimize over A with fixed order n
■ Fix A with order n, optimize over p with degree ≤ m
■ Optimize over both p with degree ≤ m and A with order n

We’ll report only the last.



Experiments

Terry Rockafellar

Crouzeix’s
Conjecture

Variational Analysis
of the Crouzeix
Ratio

Nonsmooth
Optimization
of the Crouzeix
Ratio

Computational Tools

Experiments

Optimizing over
both p (deg.
m ≤ 4) and A

(n = 5)

Best Solution
Found: f(p,A) =
0.5000000002
For what (c, A) is
the Crouzeix ratio
f(c, A) = 0.5?

Concluding Remarks

27 / 33

We have run many experiments searching for local minimizers of
the Crouzeix ratio using BFGS.

Several scenarios:

■ Fix p with degree m, optimize over A with fixed order n
■ Fix A with order n, optimize over p with degree ≤ m
■ Optimize over both p with degree ≤ m and A with order n

We’ll report only the last.

We restrict p to have real coefficients and A to be real, in
Hessenberg form (all but one superdiagonal is zero).
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We have run many experiments searching for local minimizers of
the Crouzeix ratio using BFGS.

Several scenarios:

■ Fix p with degree m, optimize over A with fixed order n
■ Fix A with order n, optimize over p with degree ≤ m
■ Optimize over both p with degree ≤ m and A with order n

We’ll report only the last.

We restrict p to have real coefficients and A to be real, in
Hessenberg form (all but one superdiagonal is zero).

The next slide shows the sorted final values of the Crouzeix ratio
after running BFGS for a maximum of 250 iterations from each
of 100 randomly generated starting points.
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Only locally optimal values found are 0.5 and 1
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Best ratio found was 0.5000000002, with

p(z) = −(8.3×10−11)z4−(6.6×10−7)z3+(1.7×10−5)z2+2.6z−1.3

which is nearly linear, with only one moderate sized root:
µ = 0.49426, and with A having eigenvalues 0.492 and 0.497,
with mean λ = 0.49424.
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Best ratio found was 0.5000000002, with

p(z) = −(8.3×10−11)z4−(6.6×10−7)z3+(1.7×10−5)z2+2.6z−1.3

which is nearly linear, with only one moderate sized root:
µ = 0.49426, and with A having eigenvalues 0.492 and 0.497,
with mean λ = 0.49424.

Using the Generalized Null Space Decomposition1 we find that

A− λI = UDUT + E

where U is unitary, ‖E‖ ≈ 10−3, D = diag(B1, B2), B1 is a
scalar multiple of a 2× 2 Jordan block and W (B2) ⊂ W (B1), so
it fits the example discussed earlier, but with an extra “inactive”
block B2.

1Kublanovskaja 1965; Golub-Wilkinson 1976, Guglielmi-Overton-Stewart

2014
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Independently, Crouzeix and Choi showed that the ratio 0.5 is
attained if p(z) = (z − λ)m and A is the m+ 1 by m+ 1 matrix

[

0 2
0 0

]

if m = 1, or
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·
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if m > 1

for which W (A) is the unit disk.
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Independently, Crouzeix and Choi showed that the ratio 0.5 is
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]
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for which W (A) is the unit disk.

Based on our experiments, we conjecture that this is essentially
the only case where 0.5 can be attained (we can change A by
applying a unitary similarity transformation, multiplying by a
scalar, and appending another diagonal block whose field of
values is contained in that of the first block).
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Using variational analysis we have investigated the local behavior
of the Crouzeix ratio in the simplest interesting case and we hope
to be able to generalize this to higher degree and higher order.
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Using nonsmooth optimization, specifically BFGS, we have
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conjecture.
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Chebfun allows us to compute the Crouzeix ratio to nearly
machine precision for small m and n.
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Using variational analysis we have investigated the local behavior
of the Crouzeix ratio in the simplest interesting case and we hope
to be able to generalize this to higher degree and higher order.

Using nonsmooth optimization, specifically BFGS, we have
carried out a systematic numerical exploration of Crouzeix’s
conjecture.

Chebfun allows us to compute the Crouzeix ratio to nearly
machine precision for small m and n.

The results strongly support Crouzeix’s conjecture: the globally
minimal value of the Crouzeix ratio f(p,A) is 0.5.
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Using Chebfun:
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