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What this talk is about?
+ Large-scale variational inequalities almost decomposable
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almost decomposable

+ arising in equilibrium models for energy markets

+ Create stochastic versions for VIs that tackle risk aversion

+ Solve such models.



Context: the industry of electricity

>90’s business model: competitive G + regulated TD

Rationale: fierce G competition of G provides incentive (- costs, + innovation)

Criticism: it is not clear how fierce competition is . . .

This makes important to understand competitive interaction between several G
firms seeking to maximize profit, taking into account unique aspects of electricity:
not storable, yet supply needs to meet demand, energy needs to be transmitted
from G plants to consumers, etc



European NG network
R. Egging, S. A. Gabriel, F. Holtz and J. Zhuang

A complementarity model for the European natural gas marketEnergy Policy, 36:2385–2414, 2008.



Market: Premises

+ Agents (producers, traders, logistics)
-take unilateral decisions
-behave competitively

+ A representative of the consumers (the ISO)
-focuses on the benefits of consumption
-seeking a price that matches supply and demand
-while keeping prices “low”

+ Agents’ actions coupled by some relations, clearing the
market.
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+ Agents (producers, traders, logistics)
-take unilateral decisions
-behave competitively

+ A representative of the consumers (the ISO)
-focuses on the benefits of consumption
-seeking a price that matches supply and demand
-while keeping prices “low”

+ Agents’ actions coupled by some relations, clearing the
market, (MC)

Typically, models from game theory or complementarity
leading to VIs
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+ Agents (producers, traders, logistics)

ith producer problem


min ci(qi)

s.t. qi ∈Qi

qi+
∑
j 6=i
q̃j = DEM⇐⇒ MC(qi, q̃−i) = 0
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Agents problems


min ci(qi, q̃−i)

s.t. qi ∈Qi

MC(qi, q̃−i) = 0 (π̄i)

Variational Inequality follows from optimality conditions

1st order OC

(primal form)〈
∇qic

i(q̄),qi− q̄i
〉
≥ 0

∀qi ∈Qi∩MC

In VI(F,C) :
〈
F(q̄),q− q̄

〉
≥ 0 ∀ feasible q

• the VI operator F(q) =
N∏
i=0

Fi(q) for Fi(q) = ∇qic
i(q)

• the VI feasible set C=

N∏
i=0

Qi
⋂{

q : MC(q) = 0
}

NOTE: MC does not depend on i: constraint is shared
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Application to symmetric electricity market

An ISO wants to design a market, by splitting a set of

NT = 100 thermal power plants into

N= {1,2,3,4,5,10,25,50,75,100} firms.

N 1 2 4 5 10 25 50 100

π 20.5 20.5 20.5 20 20 20 20 20

Deficit 5 5 5 0 0 0 0 0

If less than 4 firms share the market
it behaves like a monopoly,
with bad consequences for consumers: + price, - quality
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We can do better (VI origin is known)

1st handle uncertainty in agents problems

2nd derive the VI



Stochastic VI for risk-averse agents

Use CVaR risk measure, and derive VI from

ith problem

with risk aversion


min CVaR

[
(cik(qk))

K
k=1

]
s.t. qik ∈Qik for k= 1 : K

MCk(qk) = 0 for k= 1 : K

Difficulties arise:

• As written, CVaR nonsmoothness makes the VI operator

∂qi
1:K
CVaR

[
ci(q)

]
, multivalued

Reformulating the agents problem by means of

ε(Z) = minu
{
u+ 1

1−εE
[
[Zk−u]+

]}
couples all scenarios in the

feasible set; no longer a game!
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MCk(qk) = 0 for k= 1 : K

Difficulties arise:

• As written, CVaR nonsmoothness makes the VI operator

∂qi
1:K
CVaR

[
ci(q)

]
, multivalued

• Reformulating the agents problem by means of

CVaRε[Z] = minu
{
u+ 1

1−εE
[
[Zk−u]+

]}
couples all scenarios.



CVaR reformulation

FROM


min CVaR

[
(cik(qk))

K
k=1

]
s.t. qik ∈Qik for k= 1 : K
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{
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and writing []+ by means
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MCk(qk) = 0 for k= 1 : K

T ik ≥ cik(qk)−ui ,T ik ≥ 0 for k= 1 : K,ui ∈ IR

NOTE: new constraint is NOT shared

no longer a generalized Nash game, but a bilinear CP (∃?).



Dealing with multivalued Risk-Averse VIs

The risk measure ρ(Z) := CVaRε[Z] = minu
{
u+ 1

1−εE
[
[Zk−u]+

]}
is nonsmooth because it is a value-function and [·]+ is nonsmooth
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The risk measure ρ(Z) := CVaRε[Z] = minu
{
u+ 1

1−εE
[
[Zk−u]+

]}
is nonsmooth because it is a value-function and [·]+ is nonsmooth

We use smooth approximations ρ`

ρ`(Z) := min
u

{
u+

1

1−ε
E
[
σ`(Zk−u)

]}
,

for smoothing σ`→ [·]+ uniformly as τ`→ 0. For instance,

σ`(t) = (t+
√
t2+4τ2` )/2

Since ρ` is smooth, VI(F`,C) has a a single-valued VI operator involving

∇qiρ
`
[
(cik(qk))

K
k=1

]



Theorems

• like CVaR, ρ` is a risk-measure

– convex, monotone, and translation equi-variant,

– but not positively homogeneous (only coherent in the limit).

• ρ` is C2 for strictly convex smoothings such as

(t+
√
t2+4τ2` )/2

• Any accumulation point of the smoothed problems solves
the original risk-averse (non-smooth) problem as `→∞.

: existence result



Theorems

• like CVaR, ρ` is a risk-measure

– convex, monotone, and translation equi-variant,

– but not positively homogeneous (only coherent in the limit).

• ρ` is C2 for strictly convex smoothings such as

(t+
√
t2+4τ2` )/2

• Any accumulation point of the smoothed problems solves
the original risk-averse (non-smooth) problem as `→∞.

existence result
Reference: An approximation scheme for a class of risk-averse stochastic

equilibrium problems. Luna, Sagastizábal, Solodov



Assessing both options

+ Smoothed CVaR

Keeps feasible set separable by scenarios: easier VI

Needs to drive smoothing parameter to∞: repeated
VI solving

+ Reformulated CVaR

eliminates nonsmoothness

Non-separable feasible set



Smoothed versus Reformulated CVaR

Random toy problems solved with PATH S. Dirkse, M. C. Ferris, and T. Munson

+ Time (averaged for 5 instances)

With K= 20 both formulations take 13 s

With K= 100, reformulated CVaR takes 100 times longer

(smoothing 33 s, reformulation 55 min!)



Smoothed versus Reformulated CVaR

Random toy problems solved with PATH S. Dirkse, M. C. Ferris, and T. Munson

+ Time (averaged for 5 instances)

With K= 20 both formulations take 13 s

With K= 100, reformulated CVaR takes 100 times longer

(smoothing 33 s, reformulation 55 min!)

+ Solution quality (20 runs, K= 50): comparing equilibrium prices
and production variables obtained with
τ ∈ {10−4,10−3,10−2,10−1,0.2,0.4,0.6,0.8,1.,10,50,75,100} and
with reformulation gives practically identical results for τ` < 1.



Final Comments
• When in the agents’ problems objective function depends on actions

of other agents’, writing down the stochastic VI can be tricky: which
selection mechanism in a 2-stage setting?

• Handling CVaR nonsmoothness via reformulation seems inadequate
for large instances

• Smoothing solves satisfactorily the original risk-averse nonsmooth
problem for moderate τ (no need to make τ→ 0)

• Smoothing preserves separability; it is possible to combine

– Benders’ techniques (along scenarios) with

– Dantzig-Wolfe decomposition (along agents)

• Decomposition matters: for European Natural Gas network
– Solving VI directly with PATH solver S. Dirkse, M. C. Ferris, and T. Munson

– Using DW-decomposition saves 2/3 of solution time
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From April to June 2016 IMPA will host

http://svan2016.sciencesconf.org , a thematic trimestre

Stochastic Variational Analysis
• Workshop on Analysis and Applications of Stochastic Systems

– stochastic networks and games;

– energy markets and financial mathematics, and

– the optimal control and optimization of systems s. t. uncertainty.

• Basic course on Stochastic Programming and minicourses on

– Scenario generation and sampling methods

– Randomized Methods, Machine Learning, Big Data

– Equilibrium Routing under Uncertainty

– Stochastic VIs

• ICSP 2016



Plenary talks in http://icsp2016.sciencesconf.org

• Designing the uncertainty models (J. Royset)
• Risk measures (A. Ruszczynski)
• Mixed integer stochastic programming (S. Ahmed)
• Stochastic programming for energy planning (M. Pereira)

Minisymposia (=1 semiplenary + 3 talks)

• Data-driven methods (G. Bayraksan)
• Stochastic dynamic programming (D. Brown)
• Machine learning and stochastic optimization (W. Powell)
• Stochastic equilibrium and variational inequalities (H. Xu)
• Finance (M. Kopa)
• Applications in natural resources (D. Woodruff)

Tutorials on the weekend before the conference
SAVE THE DATES! June 25th-July 1st, 2016



Submission deadlines

Thematic Sessions: June, July, August, 2015

Individual Contributions: September 2015 - January 2016


