# AN APPROXIMATION SCHEME FOR **Risk Averse**

# STOCHASTIC EQUILIBRIUM PROBLEMS

#### **Claudia Sagastizábal**

(visiting researcher IMPA)

mailto:sagastiz@impa.br http://www.impa.br/~sagastiz

Limoges, Terry Fest, May 18th, 2015

joint work with J.P. Luna (UFRJ) and M. Solodov (IMPA)

# What this talk is about?

Large-scale variational inequalities  $VI(F, C) : \langle F(\bar{q}), q - \bar{q} \rangle \ge 0 \forall \text{ feasible } q = (q^0, \dots, q^N)$   $- \text{ with VI operator } F(q) = \prod_{i=0}^{N} F^i(q)$   $- \text{ with VI feasible set } C = \prod_{i=0}^{N} Q^i \bigcap \{q : MC(q) = 0\}$ 

# What this talk is about?

Large-scale variational inequalities
VI(F, C): ⟨F(q̄), q - q̄⟩ ≥ 0 ∀ feasible q = (q<sup>0</sup>,...,q<sup>N</sup>)
- with VI operator F(q) = ∏<sub>i=0</sub><sup>N</sup> F<sup>i</sup>(q) almost decomposable
- with VI feasible set C = ∏<sub>i=0</sub><sup>N</sup> Q<sup>i</sup> ∩ {q:MC(q) = 0} almost decomposable

# What this talk is about?

- Large-scale variational inequalities
  VI(F, C) : ⟨F(q̄), q q̄⟩ ≥ 0 ∀ feasible q = (q<sup>0</sup>,...,q<sup>N</sup>)
   with VI operator F(q) = ∏<sub>i=0</sub><sup>N</sup> F<sup>i</sup>(q) almost decomposable
   with VI feasible set C = ∏<sub>i=0</sub><sup>N</sup> Q<sup>i</sup> ∩ {q : MC(q) = 0} almost decomposable
- + arising in equilibrium models for energy markets
- + Create stochastic versions for VIs that tackle risk aversion
- + Solve such models.

### **Context: the industry of electricity**



Generation

Transmission

**Distribution** 

# >90's business model: competitive G + regulated TD

**Rationale**: fierce G competition of G provides incentive (- costs, + innovation) **Criticism**: it is not clear how fierce competition is ...

This makes important to understand competitive interaction between <u>several</u> G firms seeking to maximize profit, taking into account unique aspects of electricity: not storable, yet supply needs to meet demand, energy needs to be transmitted from G plants to consumers, etc

#### **European NG network**

R. Egging, S. A. Gabriel, F. Holtz and J. Zhuang

A complementarity model for the European natural gas marketEnergy Policy, 36:2385–2414, 2008.



# **Market: Premises**

- + Agents (producers, traders, logistics)
  - -take unilateral decisions
  - -behave competitively
- + A representative of the consumers (the ISO)
  - -focuses on the benefits of consumption
  - -seeking a price that matches supply and demand -while keeping prices "low"
- + Agents' actions coupled by some relations, clearing the market.

# **Market: Premises**

- + Agents (producers, traders, logistics)
  - -take unilateral decisions
  - -behave competitively
- + A representative of the consumers (the ISO)
  - -focuses on the benefits of consumption
  - -seeking a price that matches supply and demand-while keeping prices "low"
- + Agents' actions coupled by some relations, clearing the market, (MC)

# **Market: Premises**

- + Agents (producers, traders, logistics)
  - -take unilateral decisions
  - -behave competitively
- + A representative of the consumers (the ISO)
  - -focuses on the benefits of consumption
  - -seeking a price that matches supply and demand
    -while keeping prices "low"
- + Agents' actions coupled by some relations, clearing the market, (MC)

Typically, models from game theory or complementarity leading to VIs

#### Market as a generalized Nash model

+ Agents (producers, traders, logistics)

ith producer problem  $\begin{cases} \min c^{i}(q^{i}) \\ s.t. \quad q^{i} \in Q^{i} \\ q^{i} + \sum_{j \neq i} \tilde{q}^{j} = DEM \iff MC(q^{i}, \tilde{q}^{-i}) = 0 \end{cases}$ 

### Market as a generalized Nash model

+ Agents (producers, traders, logistics)

$$\begin{array}{l} \text{ith producer problem} \left\{ \begin{array}{ll} \min \ c^{i}(q^{i}) \\ \text{s.t.} \ q^{i} \in Q^{i} \\ q^{i} + \sum_{j \neq i} \tilde{q}^{j} = \text{DEM} \Longleftrightarrow \ \text{MC}(q^{i}, \tilde{q}^{-i}) = 0 \end{array} \right. \\ \left. \begin{array}{l} + \ \text{A representative of the consumers (the ISO)} \\ \text{Agent 0 problem} \left\{ \begin{array}{l} \min \ c^{0}(\tilde{q}^{-0}) \\ \text{s.t.} \ q^{0} = \text{DEM} - \sum_{j \neq 0} \tilde{q}^{j} \in Q^{0} \end{array} \right. \\ \end{array} \right. \end{array}$$

### Market as a generalized Nash model

+ Agents (producers, traders, logistics)

 $\text{ith producer problem} \left\{ \begin{array}{ll} \min & c^i(q^i) \\ \text{s.t.} & q^i \in Q^i \\ & q^i + \sum_{j \neq i} \tilde{q}^j = \text{DEM} \Longleftrightarrow \ \text{MC}(q^i, \tilde{q}^{-i}) = 0 \end{array} \right.$ 

#### + A representative of the consumers (the ISO)

Agent 0 problem 
$$\begin{cases} \min c^{0}(\tilde{q}^{-0}) & (\equiv \max \text{ welfare}) \\ \text{s.t. } q^{0} = DEM - \sum_{j \neq 0} \tilde{q}^{j} \in Q^{0} \end{cases}$$
$$\begin{pmatrix} \min c^{i}(q^{i}, \tilde{q}^{-i}) \\ \text{s.t. } q^{i} \in Q^{i} \\ MC(q^{i}, \tilde{q}^{-i}) = 0 \end{cases}$$

# Market:Equilibrium price: $\bar{\pi}$

+ Agents (producers, traders, logistics)

 $\text{ith producer problem} \left\{ \begin{array}{ll} \min & c^{i}(q^{i}) \\ \text{s.t.} & q^{i} \in Q^{i} \\ & q^{i} + \sum_{j \neq i} \tilde{q}^{j} = \text{DEM} \Longleftrightarrow \ \text{MC}(q^{i}, \tilde{q}^{-i}) = 0 \end{array} \right.$ 

#### + A representative of the consumers (the ISO)



A Variational Equilibrium of the game is a Generalized Nash Equilibrium satisfying  $\bar{\pi}^{i} = \bar{\pi}$ 

# **Market:** Variational Equilibrium price: same $\bar{\pi}$

+ Agents (producers, traders, logistics)

 $\text{ith producer problem} \left\{ \begin{array}{ll} \min & c^{i}(q^{i}) \\ \text{s.t.} & q^{i} \in Q^{i} \\ & q^{i} + \sum_{j \neq i} \tilde{q}^{j} = \text{DEM} \Longleftrightarrow \ \text{MC}(q^{i}, \tilde{q}^{-i}) = 0 \end{array} \right.$ 

#### + A representative of the consumers (the ISO)



A Variational Equilibrium of the game is a Generalized Nash Equilibrium satisfying  $\bar{\pi}^{i} = \bar{\pi}$ 

# **Market: VI reformulation**

Agents problems  $\begin{cases} \min & c^{i}(q^{i}, \tilde{q}^{-i}) \\ \text{s.t.} & q^{i} \in Q^{i} \\ & \text{MC}(q^{i}, \tilde{q}^{-i}) = 0 \end{cases}$ 

Variational Inequality follows from optimality conditions

### **Market: VI reformulation**

Agents problems  $\begin{cases} \min & c^{i}(q^{i}, \tilde{q}^{-i}) \\ s.t. & q^{i} \in Q^{i} \\ & MC(q^{i}, \tilde{q}^{-i}) = 0 \end{cases}$ 

1st order OC  
(primal form)  
$$\left\langle \nabla_{q^{i}} c^{i}(\bar{q}), q^{i} - \bar{q}^{i} \right\rangle \ge 0$$
  
 $\forall q^{i} \in Q^{i} \cap MC$ 

Variational Inequality follows from optimality conditions

#### **Market: VI reformulation**

Agents problems  $\begin{cases} \min & c^{i}(q^{i}, \tilde{q}^{-i}) \\ s.t. & q^{i} \in Q^{i} \\ & MC(q^{i}, \tilde{q}^{-i}) = 0 \end{cases}$ 

1st order OC  
(primal form)  
$$\left\langle \nabla_{q^{i}} c^{i}(\bar{q}), q^{i} - \bar{q}^{i} \right\rangle \ge 0$$
  
 $\forall q^{i} \in Q^{i} \cap MC$ 

Variational Inequality follows from optimality conditions

In VI(F,C):  $\langle F(\bar{q}), q - \bar{q} \rangle \ge 0 \forall$  feasible q

• the VI operator  $F(q) = \prod_{i=0}^{N} F^{i}(q)$  for  $F^{i}(q) = \nabla_{q^{i}} c^{i}(q)$ • the VI feasible set  $C = \prod_{i=0}^{N} Q^{i} \bigcap \{q : MC(q) = 0\}$ 

**NOTE:** MC does not depend on i: constraint is **shared** 

### **Application to symmetric electricity market**

An ISO wants to design a market, by splitting a set of

 $N_T = 100$  thermal power plants into

 $N = \{1, 2, 3, 4, 5, 10, 25, 50, 75, 100\}$  firms.

### **Application to symmetric electricity market**

An ISO wants to design a market, by splitting a set of

 $N_T = 100$  thermal power plants into

 $N = \{1, 2, 3, 4, 5, 10, 25, 50, 75, 100\}$  firms.

| N       | 1    | 2    | 4    | 5  | 10 | 25 | 50 | 100 |
|---------|------|------|------|----|----|----|----|-----|
| π       | 20.5 | 20.5 | 20.5 | 20 | 20 | 20 | 20 | 20  |
| Deficit | 5    | 5    | 5    | 0  | 0  | 0  | 0  | 0   |

# **Application to symmetric electricity market**

An ISO wants to design a market, by splitting a set of

 $N_T = 100$  thermal power plants into

 $N = \{1, 2, 3, 4, 5, 10, 25, 50, 75, 100\}$  firms.

| Ν       | 1    | 2    | 4    | 5  | 10 | 25 | 50 | 100 |
|---------|------|------|------|----|----|----|----|-----|
| π       | 20.5 | 20.5 | 20.5 | 20 | 20 | 20 | 20 | 20  |
| Deficit | 5    | 5    | 5    | 0  | 0  | 0  | 0  | 0   |

If less than 4 firms share the market

it behaves like a monopoly,

with bad consequences for consumers: + price, - quality

Suppose there are k = 1, ..., K uncertain scenarios (demand, costs, etc) Production variables depend on realizations:  $q_k = (q_k^i, i = 0, ..., N)$ 

ith problem for scenario k

min 
$$c_k^i(q_k^i, q_k^{-i})$$
  
s.t.  $q_k^i \in Q_k^i$   
 $MC_k(q_k^i, q_k^{-i}) = 0$ 

Suppose there are k = 1, ..., K uncertain scenarios (demand, costs, etc) Production variables depend on realizations:  $q_k = (q_k^i, i = 0, ..., N)$ 

 $\begin{array}{c} \text{ith problem} \\ \text{for scenario } k \end{array} \left\{ \begin{array}{c} \min & c_k^i(q_k) \\ \text{s.t.} & q_k^i \in Q_k^i \\ & MC_k(q_k) = 0 \end{array} \right. \end{array} \right.$ 

For one scenario k, a VI( $F_k, C_k$ ) with  $F_k^i(q_k) = \nabla_{q_k^i} c_k^i(q_k)$ 

Suppose there are k = 1, ..., K uncertain scenarios (demand, costs, etc) Production variables depend on realizations:  $q_k = (q_k^i, i = 0, ..., N)$ 

ith problem for scenario k

$$\begin{array}{ll} & \text{in} & c_k^i(q_k) \\ \text{t.} & q_k^i \in Q_k^i \\ & \text{MC}_k(q_k) = 0 \end{array}$$

For one scenario k, a VI( $F_k, C_k$ ) with  $F_k^i(q_k) = \nabla_{q_k^i} c_k^i(q_k)$ 

VI literature treats uncertainty in VI( $F_k, C_k$ ) using a gap function, or taking expectation in F: VI( $\mathbb{E}\left[(F_k)_{k=1}^K\right], C_k$ ) same C

Suppose there are k = 1, ..., K uncertain scenarios (demand, costs, etc) Production variables depend on realizations:  $q_k = (q_k^i, i = 0, ..., N)$ 

ith problemminfor scenario ks.t.

$$\begin{array}{ll} \mathbf{n} & \mathbf{c}_{k}^{\mathbf{i}}(\mathbf{q}_{k}) \\ & \mathbf{q}_{k}^{\mathbf{i}} \in \mathbf{Q}_{k}^{\mathbf{i}} \\ & \mathbf{MC}_{k}(\mathbf{q}_{k}) = \mathbf{0} \end{array}$$

For one scenario k, a VI( $F_k, C_k$ ) with  $F_k^i(q_k) = \nabla_{q_k^i} c_k^i(q_k)$ 

VI literature treats uncertainty in VI( $F_k, C_k$ ) using a gap function, or taking expectation in F: VI( $\mathbb{E}\left[(F_k)_{k=1}^K\right], C_k$ ) same C

We can do better (VI origin is known)

**1st** handle uncertainty in agents problems

**2nd** derive the VI

### **Stochastic VI for risk-averse agents**

Use CVaR risk measure, and derive VI from

ith problem with risk aversion

$$\begin{array}{ll} \min & \text{CVaR}\left[(c_k^i(q_k))_{k=1}^K\right]\\ \text{s.t.} & q_k^i \in Q_k^i \text{ for } k=1:K\\ & \text{MC}_k(q_k)=0 \text{ for } k=1:K \end{array}$$

#### **Difficulties arise:**

• As written, CVaR nonsmoothness makes the VI operator  $\partial_{q_{1:K}^{i}}$ CVaR  $[c^{i}(q)]$ , multivalued

#### **Stochastic VI for risk-averse agents**

Use CVaR risk measure, and derive VI from

ith problem with risk aversion

$$\begin{array}{ll} \mbox{min} & \mbox{CVaR}\left[(c_k^i(q_k))_{k=1}^K\right] \\ \mbox{s.t.} & \mbox{q}_k^i \in Q_k^i \mbox{ for } k = 1:K \\ & \mbox{MC}_k(q_k) = 0 \mbox{ for } k = 1:K \end{array}$$

#### **Difficulties arise:**

• As written, CVaR nonsmoothness makes the VI operator  $\partial_{q_{1:K}^{i}}$ CVaR  $[c^{i}(q)]$ , multivalued

$$CVaR_{\varepsilon}[\boldsymbol{\mathcal{Z}}] = \min_{\boldsymbol{u}} \left\{ \boldsymbol{u} + \frac{1}{1-\varepsilon} \mathbb{E}\left[ [\boldsymbol{\mathcal{Z}}_{k} - \boldsymbol{u}]^{+} \right] \right\}$$

#### **Stochastic VI for risk-averse agents**

Use CVaR risk measure, and derive VI from

ith problem with risk aversion

$$\begin{array}{ll} \min & \text{CVaR}\left[(c_k^i(q_k))_{k=1}^K\right]\\ \text{s.t.} & q_k^i \in Q_k^i \text{ for } k=1:K\\ & \text{MC}_k(q_k)=0 \text{ for } k=1:K \end{array}$$

#### **Difficulties arise:**

- As written, CVaR nonsmoothness makes the VI operator  $\partial_{q_{1:K}^{i}}$ CVaR  $[c^{i}(q)]$ , multivalued
- Reformulating the agents problem by means of  $CVaR_{\varepsilon}[\mathcal{Z}] = min_{u} \left\{ u + \frac{1}{1-\varepsilon} \mathbb{E}\left[[\mathcal{Z}_{k} - u]^{+}\right] \right\}$ couples all scenarios.

# CVaR reformulation

$$\begin{split} & \text{FROM} \, \left\{ \begin{array}{ll} \min \quad \text{CVaR} \left[ (c_k^i(q_k))_{k=1}^K \right] \\ & \text{s.t.} \quad q_k^i \in Q_k^i \text{ for } k=1: K \quad \text{using} \\ & \text{MC}_k(q_k) = 0 \text{ for } k=1: K, \end{array} \right. \\ & \text{CVaR}[\boldsymbol{\mathcal{Z}}] := \min_u \left\{ u + \frac{1}{1-\epsilon} \mathbb{E} \left[ [\boldsymbol{\mathcal{Z}}_k - u]^+ \right] \right\} \text{ and writing } []^+ \text{ by means} \\ & \text{of new variables and constraints} \end{array} \\ & \text{TO:} \left\{ \begin{array}{ll} \min \quad \boldsymbol{u}^i + \frac{1}{1-\epsilon} \mathbb{E} \left[ (\boldsymbol{T}_k^i)_{k=1}^K \right] \\ & \text{s.t.} \quad q_k \in Q_k \text{ for } k=1: K \\ & \text{MC}_k(q_k) = 0 \text{ for } k=1: K \\ & \text{T}_k^i \geq c_k^i(q_k) - u^i, T_k^i \geq 0 \text{ for } k=1: K, \boldsymbol{u}^i \in \mathbb{R} \end{array} \right. \end{split} \end{split}$$

### CVaR reformulation

$$\begin{split} & \text{FROM} \left\{ \begin{array}{ll} \min \quad \text{CVaR}\left[ (c_k^i(q_k))_{k=1}^K \right] \\ & \text{s.t.} \quad q_k^i \in Q_k^i \text{ for } k=1: K \quad \text{using} \\ & \text{MC}_k(q_k) = 0 \text{ for } k=1: K, \end{array} \right. \\ & \text{CVaR}[\boldsymbol{\mathcal{Z}}] := \min_u \left\{ u + \frac{1}{1-\epsilon} \mathbb{E}\left[ [\boldsymbol{\mathcal{Z}}_k - u]^+ \right] \right\} \text{ and writing } []^+ \text{ by means} \\ & \text{of new variables and constraints} \end{array} \\ & \text{TO:} \left\{ \begin{array}{l} \min \quad \boldsymbol{u}^i + \frac{1}{1-\epsilon} \mathbb{E}\left[ (\boldsymbol{T}_k^i)_{k=1}^K \right] \\ & \text{s.t.} \quad q_k \in Q_k \text{ for } k=1: K \\ & \text{MC}_k(q_k) = 0 \text{ for } k=1: K \\ & \text{T}_k^i \geq c_k^i(q_k) - u^i, T_k^i \geq 0 \text{ for } k=1: K, \boldsymbol{u}^i \in \mathbb{R} \end{array} \right. \end{split}$$

#### **NOTE:** new constraint is **NOT shared**

no longer a generalized Nash game, but a bilinear CP ( $\exists$ ?).

### **Dealing with multivalued Risk-Averse VIs**

The risk measure  $\rho(\boldsymbol{Z}) := CVaR_{\varepsilon}[\boldsymbol{Z}] = min_{u} \left\{ u + \frac{1}{1-\varepsilon}\mathbb{E}\left[[\boldsymbol{Z}_{k} - u]^{+}\right] \right\}$ is nonsmooth because it is a value-function and  $[\cdot]^{+}$  is nonsmooth

#### **Dealing with multivalued Risk-Averse VIs**

The risk measure  $\rho(\boldsymbol{Z}) := CVaR_{\varepsilon}[\boldsymbol{Z}] = \min_{u} \left\{ u + \frac{1}{1-\varepsilon} \mathbb{E}\left[ [\boldsymbol{Z}_{k} - u]^{+} \right] \right\}$ is nonsmooth because it is a value-function and  $[\cdot]^{+}$  is nonsmooth

We use smooth approximations  $\rho^{\ell}$  $\rho^{\ell}(\boldsymbol{\mathcal{Z}}) := \min_{\boldsymbol{u}} \left\{ \boldsymbol{u} + \frac{1}{1-\varepsilon} \mathbb{E} \left[ \boldsymbol{\sigma}_{\ell}(\boldsymbol{\mathcal{Z}}_{k} - \boldsymbol{u}) \right] \right\},$ 

for smoothing  $\sigma_{\ell} \to [\cdot]^+$  uniformly as  $\tau_{\ell} \to 0$ . For instance,

 $\sigma_{\ell}(t) = (t + \sqrt{t^2 + 4\tau_{\ell}^2})/2$ 

Since  $\rho^{\ell}$  is smooth,  $\mathbf{VI}(F^{\ell}, C)$  has a single-valued VI operator involving  $\nabla_{q^i} \rho^{\ell} \left[ (c_k^i(q_k))_{k=1}^K \right]$ 

# Theorems

- like CVaR,  $\rho^{\ell}$  is a risk-measure
  - convex, monotone, and translation equi-variant,
  - but not positively homogeneous (only coherent in the limit).
- $\rho^{\ell}$  is C<sup>2</sup> for strictly convex smoothings such as  $(t + \sqrt{t^2 + 4\tau_{\ell}^2})/2$
- Any accumulation point of the smoothed problems solves the original risk-averse (non-smooth) problem as  $\ell \to \infty$ .

# Theorems

- like CVaR,  $\rho^{\ell}$  is a risk-measure
  - convex, monotone, and translation equi-variant,
  - but not positively homogeneous (only coherent in the limit).
- $\rho^{\ell}$  is C<sup>2</sup> for strictly convex smoothings such as  $(t + \sqrt{t^2 + 4\tau_{\ell}^2})/2$
- Any accumulation point of the smoothed problems solves the original risk-averse (non-smooth) problem as  $\ell \to \infty$ .

# existence result

Reference: An approximation scheme for a class of risk-averse stochastic equilibrium problems. Luna, Sagastizábal, Solodov

# **Assessing both options**

+ Smoothed CVaR

Keeps feasible set separable by scenarios: easier VI Needs to drive smoothing parameter to  $\infty$ : repeated VI solving

+ Reformulated CVaR

eliminates nonsmoothness

Non-separable feasible set

### Smoothed versus Reformulated CVaR

Random toy problems solved with PATH S. Dirkse, M. C. Ferris, and T. Munson

Time (averaged for 5 instances)
 With K = 20 both formulations take 13 s
 With K = 100, reformulated CVaR takes 100 times longer (smoothing 33 s, reformulation 55 min!)

#### Smoothed versus Reformulated CVaR

Random toy problems solved with PATH S. Dirkse, M. C. Ferris, and T. Munson

**+** Time (averaged for 5 instances)

With K = 20 both formulations take 13 s With K = 100, reformulated CVaR takes **100** times longer (smoothing 33 s, reformulation 55 min!)

+ Solution quality (20 runs, K = 50): comparing equilibrium prices and production variables obtained with  $\tau \in \{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 0.2, 0.4, 0.6, 0.8, 1., 10, 50, 75, 100\}$  and with reformulation gives practically identical results for  $\tau^{\ell} < 1$ .

# **Final Comments**

- When in the agents' problems objective function depends on actions of other agents', writing down the stochastic VI can be tricky: which selection mechanism in a 2-stage setting?
- Handling CVaR nonsmoothness via reformulation seems inadequate for large instances
- Smoothing solves satisfactorily the original risk-averse nonsmooth problem for moderate  $\tau$  (no need to make  $\tau \rightarrow 0$ )
- Smoothing preserves separability; it is possible to combine
  - Benders' techniques (along scenarios) with
  - Dantzig-Wolfe decomposition (along agents)
- Decomposition matters: for European Natural Gas network
  - Solving VI directly with PATH solver S. Dirkse, M. C. Ferris, and T. Munson
  - Using DW-decomposition saves 2/3 of solution time

# From April to June 2016 IMPA will host

http://svan2016.sciencesconf.org , a thematic trimestre

**Stochastic Variational Analysis** 

# From April to June 2016 IMPA will host

http://svan2016.sciencesconf.org , a thematic trimestre

# **Stochastic Variational Analysis**

- Workshop on Analysis and Applications of Stochastic Systems
  - stochastic networks and games;
  - energy markets and financial mathematics, and
  - the optimal control and optimization of systems s. t. uncertainty.
- Basic course on Stochastic Programming and minicourses on
  - Scenario generation and sampling methods
  - Randomized Methods, Machine Learning, Big Data
  - Equilibrium Routing under Uncertainty
  - Stochastic VIs
- ICSP 2016

#### Plenary talks in

#### http://icsp2016.sciencesconf.org

- Designing the uncertainty models (J. Royset)
- Risk measures (A. Ruszczynski)
- Mixed integer stochastic programming (S. Ahmed)
- Stochastic programming for energy planning (M. Pereira)

Minisymposia (=1 semiplenary + 3 talks)

- Data-driven methods (G. Bayraksan)
- Stochastic dynamic programming (D. Brown)
- Machine learning and stochastic optimization (W. Powell)
- Stochastic equilibrium and variational inequalities (H. Xu)
- Finance (M. Kopa)
- Applications in natural resources (D. Woodruff)

#### Tutorials on the weekend before the conference SAVE THE DATES! June 25th-July 1st, 2016



#### **Submission deadlines**

Thematic Sessions: June, July, August, 2015 Individual Contributions: September 2015 - January 2016