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arising in equilibrium models for energy markets

Create stochastic versions for VIs that tackle risk aversion

Solve such models.



Context: the industry of electricity

S
2

Transmission Distribution

Generation

>9(0’s business model: competitive G + regulated TD

Rationale: fierce G competition of G provides incentive (- costs, + innovation)
Criticism: it is not clear how fierce competition is ...

This makes important to understand competitive interaction between several G
firms seeking to maximize profit, taking into account unique aspects of electricity:
not storable, yet supply needs to meet demand, energy needs to be transmitted

from G plants to consumers, etc



European NG network

R. Egging, S. A. Gabriel, F. Holtz and J. Zhuang

A complementarity model for the European natural gas marketEnergy Policy, 36:2385-2414, 2008.
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Market: Premises
Agents (producers, traders, logistics)

-take unilateral decisions

-behave competitively

A representative of the consumers (the ISO)
-focuses on the benefits of consumption
-seeking a price that matches supply and demand
-while keeping prices “low”
Agents’ actions coupled by some relations, clearing the

market.
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Market: Premises

Agents (producers, traders, logistics)
-take unilateral decisions

-behave competitively

A representative of the consumers (the ISO)
-focuses on the benefits of consumption
-seeking a price that matches supply and demand
-while keeping prices “low”
Agents’ actions coupled by some relations, clearing the
market, (MC)

Typically, models from game theory or complementarity
leading to Vs
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+ Agents (producers, traders, logistics)

ith producer problem

min c'(q")
st. qteQt
q'+) @ =DEM <= wmc(q',q ) =0
jA

+ A representative of the consumers (the ISO)

min  ¢%(q%,§°) (=max welfare)
Agent 0 problem ¢ (¢ q° = DEM — Z § € Q°
0
( . . .
min c'(q%,q")
Agents problem ¢ st. qgeQt
Mc(q4,q ) =0

\

(%)

A Variational Equilibrium of the game is a Generalized Nash Equilibrium satisfying At =7
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Market: VI reformulation

Ist order OC
( min c*(q',§ ) (primal form)
Agents problems ¢ st. qt€ Q! <tic1(q),qi—qi> >0
mc(qh, g ) =0 Vgt € QtNMc

\
Variational Inequality follows from optimality conditions

In VI(F,C): <F(q),q = q> > 0V feasible g

e the VI operator F(q H F'(q) for Fi(q) = tiCi(Q)

e the VI feasible set C = H Qiﬂ{q :MC(q) =0}
1=0

hA\[0J ¥ MC does not depend on 1: constraint is shared
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Application to symmetric electricity market

An ISO wants to design a market, by splitting a set of

N1 = 100 thermal power plants into
N ={1,2,3,4,5,10,25,50,75,100} firms.

N 1 2 4 5 102550 100
T 20.5 1 20.5(20.5 20202020 20
Deficit 5 5 5 O 0] 0|0 0

If less than 4 firms share the market

it behaves like a monopoly,

+ price, - quality

with bad consequences for consumers:
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What about uncertainty?

Suppose there are k = 1,..., K uncertain scenarios (demand, costs, etc)

Production variables depend on realizations: qx = (qi,1=0,...,N)

ith problem

for scenario k

\\

’

min Ci‘{(qk)
st qLeQt
MCk(qx) =0

For one scenario k, a VI(Fy, Cy) with Fi(qy)= tic{t(qk)

VI literature treats uncertainty in VI(Fy, Cy ) using a gap function, or
taking expectation in F: VI(IE [(Fk)};d , Ci ) same C

We can do better (VI origin is known)

1st handle uncertainty in agents problems

2nd derive the VI



Stochastic VI for risk-averse agents

Use CVaR risk measure, and derive VI from

ith problem

with risk aversion
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Stochastic VI for risk-averse agents

Use CVaR risk measure, and derive VI from

[ min CVaR (k@) ]

{ st qLeQifork=1:K
MCi(qx)=0fork=1:K

ith problem

with risk aversion

Difficulties arise:

e As written, CVaR nonsmoothness makes the VI operator

0

qlI:K

CVaR [ci (q )} , multivalued

e Reformulating the agents problem by means of
CVaR,[Z] = miny, {u—l— LI [[Zk —u]ﬂ }

1—e¢

couples all scenarios.



CVaR reformulation
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CVaR reformulation

(

min CVaR [(ci(qk))}g:]}
FROM ¢ st gt eQifork=1:K using
MCi(qx) =0fork=1:K,

\

CVaR[Z] :=miny {u+ LIy iy [[Zk —u]+] } and writing [|7 by means

1—e¢

of new variables and constraints
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st. qr€Qxfork=1:K
MCx(qx) =0fork=1:K
T]i( > c]'lc(qk)—ui,T]i< >0 fork =1 :K,ui c IR

TO: ¢

\

\[0J N MW new constraint is NOT shared

no longer a generalized Nash game, but a bilinear CP (3?).
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Dealing with multivalued Risk-Averse Vis

The risk measure p(Z) := CVaR;[Z] = min,, {U+ 113E [[Zk —u]ﬂ }

is nonsmooth because it is a value-function and [-]* is nonsmooth

We use smooth approximations p*

o' (Z) := min {u+
jus

B [olZe-w) |

for smoothing oy — [-]™ uniformly as Ty — 0. For instance,

op(t) = (t+ \/t2+4fc%)/2

Since p! is smooth, VI(FE, C) has a a single-valued VI operator involving

V0 | (ex(ar))i—;



Theorems

e like CVaR, p'is a risk-measure
— convex, monotone, and translation equi-variant,

- bllt IlOt pOSlthely hOHlOgeIlCOllS (only coherent in the limit).
e p'is C? for strictly convex smoothings such as
(t+ \/t2 +412)/2

e Any accumulation point of the smoothed problems solves

the original risk-averse (non-smooth) problem as { — oo.



Theorems

e like CVaR, p'is a risk-measure

— convex, monotone, and translation equi-variant,

- bllt IlOt pOSlthely homogeneous (only coherent in the limit).

e p'is C? for strictly convex smoothings such as

(t+ \/t2 +412)/2
e Any accumulation point of the smoothed problems solves
the original risk-averse (non-smooth) problem as { — oo.

existence result

Reference: An approximation scheme for a class of risk-averse stochastic

equilibrium problems. Luna, Sagastizabal, Solodov



Assessing both options
Smoothed CvaR

Keeps feasible set separable by scenarios: easier VI
Needs to drive smoothing parameter to co: repeated
VI solving

Reformulated CvaR
eliminates nonsmoothness

Non-separable feasible set



Smoothed versus Reformulated CvaR

Random toy problems solved with PATH s. Dirkse, M. C. Ferris, and T. Munson

Time (averaged for 5 instances)
With K = 20 both formulations take 13 s
With K = 100, reformulated CVaR takes 100 times longer

(smoothing 33 s, reformulation 55 min!)



Smoothed versus Reformulated CvaR

Random toy problems solved with PATH s. Dirkse, M. C. Ferris, and T. Munson

Time (averaged for 5 instances)
With K = 20 both formulations take 13 s
With K = 100, reformulated CVaR takes 100 times longer

(smoothing 33 s, reformulation 55 min!)
Solution quality (20 runs, K = 50): comparing equilibrium prices
and production variables obtained with
te{1074,1073,10%,10—1,0.2,0.4,0.6,0.8,1.,10,50, 75,100} and

with reformulation gives practically identical results for t* < 1.



Final Comments

When in the agents’ problems objective function depends on actions
of other agents’, writing down the stochastic VI can be tricky: which
selection mechanism in a 2-stage setting?

Handling CVaR nonsmoothness via reformulation seems inadequate
for large instances

Smoothing solves satisfactorily the original risk-averse nonsmooth
problem for moderate T (no need to make T — 0)
Smoothing preserves separability; it 1s possible to combine

— Benders’ techniques (along scenarios) with

— Dantzig-Wolfe decomposition (along agents)

Decomposition matters: for European Natural Gas network
— Solving VI directly with PATH solver S. Dirkse, M. C. Ferris, and T. Munson

— Using DW-decomposition saves 2/3 of solution time
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From April to June 2016 IMPA will host

L /R E LA TRV (1 T B gl a thematic trimestre

Stochastic Variational Analysis

e Workshop on Analysis and Applications of Stochastic Systems
— stochastic networks and games;
— energy markets and financial mathematics, and

— the optimal control and optimization of systems s. t. uncertainty.

e Basic course on Stochastic Programming and minicourses on
— Scenario generation and sampling methods
— Randomized Methods, Machine Learning, Big Data
— Equilibrium Routing under Uncertainty

— Stochastic VIs
e ICSP 2016



Plenary talks in http://icsp2016.sciencesconf.org

e Designing the uncertainty models (J. Royset)

e Risk measures (A. Ruszczynski)

e Mixed integer stochastic programming (S. Ahmed)

e Stochastic programming for energy planning (M. Pereira)
Minisymposia (=1 semiplenary + 3 talks)

e Data-driven methods (G. Bayraksan)

e Stochastic dynamic programming (D. Brown)

e Machine learning and stochastic optimization (W. Powell)
e Stochastic equilibrium and variational inequalities (H. Xu)
e Finance (M. Kopa)

e Applications in natural resources (D. Woodruff)

Tutorials on the weekend before the conference

SAVE THE DATES! June 25th-July 1st, 2016



June 25-July 01, 2016

Submission deadlines
Thematic Sessions: June, July, August, 2015
Individual Contributions: September 20135 - January 2016



