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Abstract

Monotone operators play important roles in optimization and convex analysis. We
define a new average of monotone operators by using resolvents. The new average
enjoys self-duality and inherits many nice features of given monotone operators. When
the monotone operators are positive definite matrices, the new average lies between
the harmonic average and arithmetic average. Appropriate limits of resolvent average
lead to both harmonic average and arithmetic average. Consequences on matrix
functions are also given.

2 / 72



Outline Resolvent average Dominant properties Recessive properties Graphical limits Conclusions

Outline of Topics

1 Resolvent averages

2 Dominant properties of Rµ(A, λ)
At most single-valued or strict monotonicity
Uniform monotonicity

3 Recessive properties of Rµ(A, λ)
Paramonotonicity and rectangularity
Nonexpansive monotonicity and displacement mapping

4 Graphical limits of resolvent averages

5 Extensions and relationships

3 / 72



Outline Resolvent average Dominant properties Recessive properties Graphical limits Conclusions

1 Resolvent averages

2 Dominant properties of Rµ(A, λ)
At most single-valued or strict monotonicity
Uniform monotonicity

3 Recessive properties of Rµ(A, λ)
Paramonotonicity and rectangularity
Nonexpansive monotonicity and displacement mapping

4 Graphical limits of resolvent averages

5 Extensions and relationships

4 / 72



Outline Resolvent average Dominant properties Recessive properties Graphical limits Conclusions

What is a resolvent average?

H: a real Hilbert space with inner product 〈·, ·〉.
For a set-valued operator A : H⇒ H,

dom A = {x | Ax 6= ∅}, ran A =
⋃

x∈domA

Ax ,

The set-valued inverse A−1 of A:

(y , x) ∈ gra A−1 ⇔ (x , y) ∈ gra A.

The operator A is called monotone if ∀(xi , x
∗
i ) ∈ gra A, i = 1, 2,

〈x∗2 − x∗1 , x2 − x1〉 ≥ 0,

and strictly monotone if this inequality is strict whenever x1 6= x2.
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A : H⇒ H is maximal monotone if the monotone set gra A is not properly contained
in any other monotone set.

Id : H→ H denotes the identity mapping.

For λ > 0,
JA = (Id + A)−1 : resolvent of A,

λA = λ−1(Id− JλA) : Yosida λ-regularization,

SA = Id− 2(Id + A)−1 : Rockafellar-Wets regularization of A.
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Resolvent average

For monotone operators Ai , i = 1, . . . , n and λi > 0 with
∑n

i=1 λi = 1, define

A = (A1,A2, . . . ,An),

λ = (λ1, . . . , λn).

Resolvent average of Ai , i = 1, . . . , n

Rµ(A, λ) =
[
λ1(A1 + µ−1Id)−1 + · · ·+ λn(An + µ−1Id)−1

]−1 − µ−1Id,
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Question: What does it mean?(
Rµ(A, λ) + µ−1Id

)−1
= λ1

(
A1 + µ−1Id

)−1
+ · · ·+ λn

(
An + µ−1Id

)−1
,

which is equivalent to

JµRµ(A,λ) = λ1JµA1 + · · ·+ λnJµAn . (1)
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Harmonic average and arithmetic average

Well-known harmonic average and arithmetic average are

H(A, λ) = (λ1A−11 + · · ·+ λnA−1n )−1,

A(A, λ) = λ1A1 + · · ·+ λnAn.

I If
⋂

i∈I ran Ai = ∅, then H(A, λ) is empty-valued.
I If

⋂
i∈I dom Ai = ∅, then A(A, λ) is empty-valued.
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Why study resolvent averages?

Rµ(A, λ) provides a novel method to obtain set-valued operators from known
operators Ai ’s.

It is very interesting to ask what properties Rµ(A, λ) has and inherits from those
Ai ’s.

What are the relationships among Rµ(A, λ), H(A, λ) and A(A, λ)?
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Proximal average of functions: BGLW’08

The proximal average of convex functions is defined by

Pµ(f , λ) =
[
λ1(f1 + µ−1j)∗ + · · ·+ λn(fn + µ−1j)∗

]∗ − µ−1j , (2)

for f = (f1, . . . , fn) with (∀i) fi being convex functions.

The proximal mapping of Pµ(f , λ) is the average of proximal mappings of fi ’s, namely

ProxµRµ(A, λ) = λ1 Proxµ f1 + · · ·+ λn Proxµ fn,

with the proximal mapping Proxµ fi = (µ∂fi + Id)−1.

11 / 72



Outline Resolvent average Dominant properties Recessive properties Graphical limits Conclusions

Reformulations of Rµ(A, λ)

Proposition 1

We have
µ[Rµ(A, λ)] = λ1

µA1 + · · ·+ λn
µAn. (3)

SµRµ(A,λ) = λ1SµA1 + · · ·+ λnSµAn . (4)

In terms of Yosida µ-regularization of Ai ’s, we have

Theorem 2

Rµ(A, λ) = − µ
[
− (λ1

µA1 + · · ·+ λn
µAn)

]
.
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Proposition 3

x∗ ∈ Rµ(A, λ)(x) if and only if (∀i) ∃ xi ∈ dom Ai such that
x = λ1x1 + · · ·+ λnxn

x∗ ∈
⋂n

i=1(Ai + µ−1Id)(xi )− µ−1x .
(5)

Consequently, ∀x ∈ RN ,

Rµ(A, λ)(x) =
⋃{ n⋂

i=1

(Ai + µ−1Id)(xi )− µ−1x :
n∑

i=1

λixi = x
}
, (6)

domRµ(A, λ) ⊂ λ1 dom A1 + · · ·+ λn dom An. (7)
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Furthermore, ∀x ∈ RN , ∀µ > 0,

n⋂
i=1

Ai (x) ⊂ Rµ(A, λ)(x). (8)
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Proposition 4

Let z∗, z ∈ RN . Then

Rµ((A1 − z∗, . . . ,An − z∗), λ) = Rµ(A, λ)− z∗, (9)

Rµ((A1(· − z), . . . ,An(· − z)), λ) = Rµ(A, λ)(· − z). (10)

Proposition 5

Let α > 0. Then
Rµ(αA, λ) = αRαµ(A, λ). (11)

In particular,
Rµ(A, λ) = µ−1R1(µA, λ). (12)
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Example 6

Let Ai = NCi
∀i . Then

Rµ(A, λ) = µ−1
[
(λ1PC1 + · · ·+ λnPCn)−1 − Id

]
, (13)
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Inverse formula

Fact 7 (Poliquin-Rockafellar’96)

Every mapping A : H⇒ H obeys the identity

Id− (Id + A)−1 = (Id + A−1)−1. (14)

Indeed, the Yosida regularizations of A are related to the resolvents of A by

µA = (µId + A−1)−1 = µ−1[Id− (Id + µA)−1] ∀µ > 0. (15)
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Theorem 8 (inverse formula: self duality)

Let Ai : H⇒ H be any set-valued mapping and µ > 0. Assume that
∑n

i=1 λi = 1
with λi > 0. Then [

Rµ(A, λ)
]−1

= Rµ−1(A−1, λ), i.e., (16)

[(
λ1(A1 + µ−1Id)−1 + · · ·+ λn(An + µ−1Id)−1

)−1
− µ−1Id

]−1
=(

λ1(A−11 + µId)−1 + · · ·+ λn(A−1n + µId)−1
)−1
− µId.
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Who cares about resolvent averages?

Theorem 9 (common solutions to monotone inclusions)

Suppose that for each i ∈ I , Ai : H⇒ H is maximally monotone. Let x and u be
points in H. If

⋂
i∈I Ai (x) 6= ∅, then

Rµ(A, λ)(x) =
⋂
i∈I

Ai (x). (17)

If
⋂

i∈I A−1i (u) 6= ∅, then

Rµ(A, λ)−1(u) =
⋂
i∈I

A−1i (u). (18)
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Example 10 (convex feasibility problem)

Let Ci ⊂ RN be non-empty closed convex, and Ai = NCi
. If

⋂n
i=1 Ci 6= ∅, then

Rµ(A, λ)−1(0) =
n⋂

i=1

Ci .

20 / 72



Outline Resolvent average Dominant properties Recessive properties Graphical limits Conclusions

Who cares about resolvent averages?

Example 11 (homotopy transform)

Let A1,A2 : RN ⇒ RN be maximal monotone operators. The mapping
(∀λ ∈ [0, 1]) hλ : RN ⇒ RN given by

RN 3 x 7→


A1x if λ = 0;
A2x if λ = 1;

R1(A, λ)x if 0 < λ < 1.
(19)

is a homotopy in the graphical convergence topology. More precisely, λ 7→ hλ is
continuous on [0, 1] in the graphical convergence topology.
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Example 1

Define A1(x) = x and A2(x) =


−1 if x < 0

[−1, 1] if x = 0

1 if x > 0

.

Then,

λJA1(x) =
λ

2
x and (1− λ)JA2(x) =


(1− λ)(x + 1) if x < −1

0 if 1 ≤ x ≤ 1

(1− λ)(x − 1) if x > 1

Now to see the graph of R1(A, λ), we use the Minty Parameterization,

(JR(A,λ), x − JR(A,λ))
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Example 1 cont.

23 / 72



Outline Resolvent average Dominant properties Recessive properties Graphical limits Conclusions

Example 2

Define A1(x) = ex and A2(x) = −e−x . Solving for JA1 , JA2 ,

JA1(x) = −W(ex) + x and JA2(x) = W(
1

ex
) + x

Where W is the Lambert W function. Now to see the graph of R1(A, λ) we use the
Minty Parameterizations,

(JR(A,λ), x − JR(A,λ))
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Example 2 cont.
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Inheritance of properties

Definition 12

We say that a property (p) is

1 dominant if the existence of i0 ∈ I such that Ai0 has property (p) implies that
Rµ(A, λ) has property (p);

2 recessive if (p) is not dominant, and for all i ∈ I , Ai having property (p) implies
that Rµ(A, λ) has property (p).

3 indeterminate if (p) is neither dominant nor recessive.
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What have we gained?

Theorem 13

Let A1, · · · ,An : RN ⇒ RN be monotone. Then Rµ(A, λ) is monotone. Moreover,

dom JµRµ(A,λ) = dom JµA1 ∩ · · · ∩ dom JµAn , i.e., (20)

Consequently, Rµ(A, λ) is maximal monotone if and only if (∀i) Ai is maximal
monotone.

Theorem 14 (domain and range of Rµ)

Suppose that for each i ∈ I , Ai : H⇒ H is maximally monotone. Then

ranRµ(A, λ) '
∑
i∈I

λi ran Ai , domRµ(A, λ) '
∑
i∈I

λi dom Ai . (21)
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Theorem 15 (nonempty interior of the domain, fullness of the domain and surjectivity
are dominant)

Suppose that for each i ∈ I , Ai : H⇒ H is maximally monotone.

1 If there exists i0 ∈ I such that int dom Ai0 6= ∅, then int domRµ(A, λ) 6= ∅.

2 If there exists i0 ∈ I such that dom Ai0 = H, then domRµ(A, λ) = H.

3 If there exists i0 ∈ I such that Ai0 is surjective, then Rµ(A, λ) is surjective.

29 / 72



Outline Resolvent average Dominant properties Recessive properties Graphical limits Conclusions

Convex combinations of NE or FNE

Lemma 16

Suppose that for each i ∈ I , Ni : H→ H is nonexpansive, Ti : H→ H is firmly
nonexpansive and set N =

∑
i∈I λiNi and T =

∑
i∈I λiTi . Let x and y be points in H

such that ‖Tx − Ty‖2 = 〈x − y ,Tx − Ty〉. Then Tix − Tiy = Tx − Ty for every
i ∈ I . As a consequence, the following assertions hold:

1 If there exits i0 ∈ I such that Ti0 is injective, then T is injective.

2 If x and y are points in H such that ‖Nx − Ny‖ = ‖x − y‖, then
Nix − Niy = Nx − Ny for every i ∈ I .

3 (Reich’ 83) If
⋂

i∈I Fix Ni 6= ∅, then Fix N =
⋂

i∈I Fix Ni .

I Ti0 being injective: Ti0(x) = Ti0y ⇒ x = y .
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Lemma 17

Suppose that for each i ∈ I , Ti : H→ H is firmly nonexpansive and set
T =

∑
i∈I λiTi . If there exits i0 ∈ I such that

Ti0x 6= Ti0y ⇒ ‖Ti0x − Ti0y‖2 < 〈x − y ,Ti0x − Ti0y〉, (22)

then T has property (22) as well.
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Lemma 16 gives:

Theorem 18

1 Assume that some Ai is at most single-valued. Then Rµ(A, λ) is also at most
single-valued.

2 Assume that some Ai0 is strictly monotone. Then Rµ(A, λ) is also strictly
monotone.

I A mapping A : H⇒ H is at most single-valued if for every x ∈ H, Ax is either
empty or a singleton.
I A mapping A : H⇒ H is said to be strictly monotone if whenever u ∈ Ax and
v ∈ Ay are such that x 6= y , then 0 < 〈u − v , x − y〉.
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Uniform monotonicity and uniform FNE

Definition 19

A mapping A : H⇒ H is monotone with modulus φ : [0,∞[→ [0,∞] if for every two
points (x , u) and (y , v) in gra A,

φ
(
‖x − y‖

)
≤ 〈u − v , x − y〉.

The mapping A is said to be uniformly monotone with modulus φ if φ(t) = 0⇔ t = 0.
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Definition 20

A mapping T : H→ H is firmly nonexpansive with modulus φ : [0,∞[→ [0,∞] if for
every pair of points x and y in H,

‖Tx − Ty‖2 + φ
(
‖Tx − Ty‖

)
≤ 〈Tx − Ty , x − y〉.

The mapping T : H→ H is said to be uniformly firmly nonexpansive with modulus φ
if φ(t) = 0⇔ t = 0.

I A is ϕ-monotone ⇔ JA is ϕ-FNE.
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Proposition 21

Suppose that for each i ∈ I , Ti : H→ H is firmly nonexpansive with modulus φi
which is lower semicontinuous and convex and set T =

∑
i∈I λiTi . Then T is firmly

nonexpansive with modulus φ = p 1
2
(φ,λ) which is proper, lower semicontinuous and

convex. In particular, if there exists i0 ∈ I such that Ti0 is φi0-uniformly firmly
nonexpansive, then T is φ-uniformly firmly nonexpansive.

This gives

Theorem 22 (uniform monotonicity is dominant)

Suppose that for each i ∈ I , Ai : H⇒ H is maximally monotone with modulus φi
which is lower semicontinuous and convex. Then Rµ(A, λ) is monotone with modulus
φ = pµ

2
(φ,λ) which is lower semicontinuous and convex. In particular, if there exists

i0 ∈ I such that Ai0 is φi0-uniformly monotone, then Rµ(A, λ) is φ-uniformly monotone.
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Definition 23

A mapping A : H⇒ H is ε-monotone, where ε ≥ 0, if A− εId is monotone, that is, if
for any two points (x , u) and (y , v) in gra A,

ε‖x − y‖2 ≤ 〈v − u, x − y〉.

We also say that A−1 is ε-cocoercive.

Suppose that for each i ∈ I , 0 ≤ αi ≤ ∞ and set α = (α1 · · · , αn). Define

rµ(α,λ) =
[∑

i∈I
λi (αi + µ−1)−1

]−1 − µ−1 and r(α,λ) = r1(α,λ). (23)
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Theorem 24 (strong monotonicity is dominant)

Suppose that for each i ∈ I , εi ≥ 0, Ai : H⇒ H is maximally monotone and
εi -monotone. Then Rµ(A, λ) is ε-monotone where ε = rµ(ε,λ). In particular, if there
exists i0 ∈ I , such that Ai0 is εi0-strongly monotone, then Rµ(A, λ) is ε-strongly
monotone.

Corollary 25 (cocoerciveness is dominant)

Suppose that for each i ∈ I , εi ≥ 0, Ai : H⇒ H is maximally monotone and A−1i is
εi -monotone. Then (Rµ(A, λ))−1 is ε-monotone where ε = rµ−1(ε,λ). In particular, if
there exists i0 ∈ I such that Ai0 is εi0-cocoercive, then R1(A, λ) is ε-cocoercive.
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Example 26

Let f = ‖ · ‖, A1 = ∂f and A2 = 0. Then

JA1x =

{(
1− 1

‖x‖

)
x , if ‖x‖ > 1;

0, if ‖x‖ ≤ 1

and JA2 = Id. JA1 is not an affine relation and JA2 is linear. However, for
0 < λ < 1, λ1 = λ,

JR1(A,λ)x = λJA1x + (1− λ)JA2x =

{(
1− λ 1

‖x‖

)
x , if ‖x‖ > 1;

(1− λ)x , if ‖x‖ ≤ 1,

is not an affine relation. Thus, R1(A, λ) is not an affine relation.

I Example 26 says: linearity and affinity are not dominant properties w.r.t. Rµ(A, λ).
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Theorem 27 (Linearity and affinity are recessive)

Suppose that for each i ∈ I , Ai : H⇒ H is a maximally monotone linear (resp. affine)
relation. Then Rµ(A, λ) is a maximally monotone linear (resp. affine) relation.
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Paramonotone and rectangularity

Definition 28 (rectangular and paramonotone mappings)

The monotone mapping A : H⇒ H is said to be

1 rectangular (also known as 3∗ monotone) if for every x ∈ dom A and every
v ∈ ran A we have

inf
(z,w)∈graA

〈v − w , x − z〉 > −∞, (24)

equivalently, if
dom A× ran A ⊆ dom FA. (25)

2 paramonotone if whenever we have a pair of points (x , v) and (y , u) in gra A such
that 〈x − y , v − u〉 = 0, then (x , u) and (y , v) are also in gra A.
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Recall

Definition 29 (Fitzpatrick function)

With the mapping A : H⇒ H we associate the Fitzpatrick function
FA : H ×H→ ]−∞,+∞], defined by

FA(x , v) = sup
(z,w)∈graA

(
〈w , x〉+ 〈v , z〉 − 〈w , z〉

)
, (x , v) ∈ H ×H. (26)
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Fact 30

Let A ∈ RN×N be monotone and set A+ = 1
2A + 1

2Aᵀ. Then the following assertions
are equivalent:

1 A is paramonotone;

2 A is rectangular;

3 rank A = rank A+;

4 ran A = ran A+.
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Example 31

In R2, let A1 = NR×{0}. Then JA1 is the projection on R× {0}. Since A1 is a
subdifferential, it is rectangular and paramonotone. Let A2 : R2 → R2 be the
counterclockwise rotation by π/2. Then

JA1 = PR×{0} =

(
1 0
0 0

)
, and JA2 =

(
1
2

1
2

−1
2

1
2

)
.

Since

A2 =

(
0 −1
1 0

)
, A2+ =

1

2
(A2 + Aᵀ2) = 0,

A2 is neither rectangular nor paramonotone.
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Letting λ1 = λ2 = 1
2 , we obtain

R(A) = (
1

2
JA1 +

1

2
JA2)−1 − Id =

(
0 −1
1 2

)
and

R(A)+ =
1

2

(
R(A) + R(A)ᵀ

)
=

(
0 0
0 2

)
.

By employing Fact 30 we see that R1(A, λ) is neither rectangular nor paramonotone.
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Lemma 32 (Fitzpatrick function of Rµ)

Suppose that for each i ∈ I , Ai : H⇒ H is maximally monotone. Then

FµRµ(A,λ) ≤
∑
i∈I

λiFµAi
in particular, FR1(A,λ) ≤

∑
i∈I

λiFAi
(27)

and∑
i∈I

λi dom FµAi
⊆ dom FµRµ(A,λ) in particular,

∑
i∈I

λi dom FAi
⊆ dom FR1(A,λ). (28)

Theorem 33 (rectangularity is recessive)

Suppose that for each i ∈ I , Ai : H⇒ H is rectangular and maximally monotone.
Then Rµ(A, λ) is rectangular.
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To study paramonotonicity, we need:

Proposition 34

Suppose that for each i ∈ I , Ti : H→ H is firmly nonexpansive and set
T =

∑
i∈I λiTi . Then:

1 If for each i ∈ I , given points x and y in H,

‖Tix − Tiy‖2 = 〈x − y ,Tix − Tiy〉 ⇒{
Tix = Ti (Tix + y − Tiy)

Tiy = Ti (Tiy + x − Tix),
(29)

then T also has property (29).

2 If there exists i0 ∈ I such that Ti0 has property (29) and is injective, then T has
property (29) and is injective.
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Theorem 35 (paramonotonicity is recessive)

Suppose that for each i ∈ I , Ai : H⇒ H is maximally monotone and paramonotone.
Then Rµ(A, λ) is paramonotone.
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Definition 36

The mapping D : H→ H is said to be a displacement mapping if there exists a
nonexpansive mapping N : H→ H such that D = Id− N, in which case D is
maximally monotone.

Lemma 37

The maximally monotone mapping A : H⇒ H is 1
2 -strongly monotone if and only if

A−1 is a displacement mapping.

Theorem 38 (being a displacement mapping is recessive)

Suppose that for each i ∈ I , Ai : H⇒ H is a displacement mapping. Then R1(A, λ) is
a displacement mapping.
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Lemma 39

The maximally monotone mapping N : H→ H is nonexpansive if and only if
N = 2JB − Id for a maximally monotone and nonexpansive mapping B.

Theorem 40 (nonexpansiveness is recessive)

Suppose that for each i ∈ I , Ai : H→ H is a nonexpansive and monotone mapping.
Then R1(A, λ) is nonexpansive. Furthermore, for each i ∈ I , Ai = 2JBi

− Id where Bi

is maximally monotone, nonexpansive and R1(A, λ) = 2JB − Id where B is the
maximally monotone and nonexpansive mapping given by B =

∑
i∈I λiBi .
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Theorem 41 (within the class of nonexpansive mappings, being a Banach contraction is
dominant)

Suppose that for each i ∈ I , Ai : H→ H is nonexpansive and monotone. If there exists
i0 ∈ I such that Ai0 is a Banach contraction, then R1(A, λ) is a Banach contraction.
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Theorem 42 (in MLR(H), being BML(H) and being BMLI (H) are dominant)

Suppose that for each i ∈ I , A ∈ MLR(H) and there exists i0 ∈ I such that
Ai0 ∈ BML(H). Then Rµ(A, λ) ∈ BML(H). Furthermore:

1 If Ai0 ∈ BMLI (H), then Rµ(A, λ) ∈ BMLI (H);

2 If Ai0 is paramonotone, then Rµ(A, λ) is paramonotone.

I MLR(H): maximally monotone and linear relation on H.
I BML(H): bounded monotone linear operators.
I BMLI (H): bounded monotone linear operators with a bounded inverse.
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Indeterminate properties

1 Being a projection is indeterminate;

2 Being a normal cone operator is indeterminate.
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The graphical limits by Attouch, Rockafellar and Wets are effective for analyzing the
convergence of sequences of resolvent averages.

Definition 43

For a sequence of mappings Sk : RN ⇒ RN , we say that Sk converges graphically to S ,
denoted by Sk

g→ S , if

lim sup
k

(gra Sk) = lim inf
k

(gra Sk) = gra S .

Equivalenlty, ∀x ∈ RN one has⋃
xk→x

lim sup
k

Sk(xk) ⊂ S(x) ⊂
⋃

xk→x

lim inf
k

S(xk).
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Fact 44 (Rockafellar & Wets)

(i) If a sequence of maximal monotone mappings Sk : RN ⇒ RN converges
graphically, then the limit mapping S must be maximal monotone.

(ii) For maximal monotone mappings Sk and S, for any choice of µ > 0 one has

Sk
g→ S ⇔ (Id + µSk)−1

p→ (Id + µS)−1.
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Theorem 45

Let (Ai ,k)k∈N be sequences of maximal monotone mappings and let (λi ,k)k∈N and

(µk)k∈N be sequences in (0,+∞) such that that (∀i ) Ai ,k
g→ Ai , λi ,k → λi > 0 and

µk → µ > 0. Then

Rµk ((A1,k , . . . ,An,k), (λ1,k , . . . , λn,k))
g→ Rµ(A, λ), as k →∞.

Moreover, Rµ(A, λ) is maximal monotone.

Question: What happens for µ ↓ 0 or µ ↑ ∞?
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Lemma 46

Let (An)n∈N,A be linear operators from RN to RN . If An
g→ A, then there exists

M > 0 such that
‖An‖ < M ∀n ∈ N, and ‖A‖ < M. (30)

Consequently, for linear operators (An)n∈N and A on RN , the followings are equivalent:

(i) graphical convergence: An
g→ A;

(ii) point-wise convergence: An
p→ A;

(iii) norm convergence: An
n→ A.
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Theorem 47

Let Ai , i = 1, . . . , k be invertible linear monotone operators. Assume that at least one
of A−1i , i = 1, . . . , k is striclty monotone. Then

Rµ(A, λ)→ (λ1A−11 + · · ·+ λnA−1n )−1,

when µ→∞.

Theorem 48

Let Ai , i = 1, . . . , n be linear and monotone operators. Then

Rµ(A, λ)→ λ1A1 + · · ·+ λnAn,

when µ ↓ 0.
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When Ai = ∂fi :

Theorem 49

Let fi : X → ]−∞,+∞], i = 1, . . . , n be proper lower semi-continuous convex
functions. We have

(i) When µ ↓ 0,

Rµ(∂f , λ)
g→ ∂(λ1f1 + · · ·+ λnfn).

If, in addition,
⋂n

i=1 ri(dom fi) 6= ∅, then

Rµ(∂f , λ)
g→ λ1∂f1 + · · ·+ λn∂fn when µ ↓ 0;
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(ii) When µ ↑ ∞,

Rµ(∂f , λ)
g→ ∂(λ1f ∗1 + · · ·+ λnf ∗n )∗.

If, in addition,
⋂n

i=1 ri(dom f∗i ) 6= ∅, then

Rµ(∂f , λ)
g→ [λ1(∂f1)−1 + · · ·+ λn(∂fn)−1]−1 when µ ↑ ∞.
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When (∀i) Ai are positive definite matrice:

Let SN
+ (resp. SN

++) be the set of positive semidefinite matrices (resp. positive definite
matrices). For symmetric matrices X ,Y , if X − Y ∈ SN

+ we write X � Y .

Theorem 50

Let A1, . . . ,An ∈ Sn
++. We have

1

H(A, λ) � Rµ(A, λ) � A(A, λ); (31)

2 Rµ(A, λ)→ A(A, λ) when µ→ 0;

3 Rµ(A, λ)→ H(A, λ) when µ→∞.
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Corollary 51

Assume that (∀i) Ai ∈ SN
++ and

∑n
i=1 λi = 1 with λi > 0. Then

(λ1A1 + · · ·+ λnAn)−1 � λ1A−11 + · · ·+ λnA−1n .

Consequently, the matrix function X 7→ X−1 is matrix convex on SN
++.

Corollary 52

For every µ > 0, the resolvent average matrix function A 7→ Rµ(A, λ) given by

(A1, · · · ,An) 7→ [λ1(A−11 + µ−1Id)−1 + · · ·+ λn(A−1n + µ−1Id)−1]−1

− µ−1Id

is matrix concave on SN
++ × · · · × SN

++.
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For each λ = (λ1, · · · , λn) with
∑n

i=1 λi = 1 and λi > 0 ∀i , the harmonic average
matrix function

(A1, · · · ,An) 7→ (λ1A−11 + · · ·+ λnA−1n )−1 is matrix concave

on SN
++ × · · · × SN

++. Consequenlty, the harmonic average function

(x1, · · · , xn) 7→ 1

x−11 + · · ·+ x−1n

is concave (32)

on R++ × · · · × R++.
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How far does this take us?

Extensions to averaged mappings by Combettes?

Relationships to geometric averages of matrices, variational sums of monotone
operators by Attouch, Baillon & Thera?

For general monotone operators, under what conditions

Rµ(A, λ)
g→ H(A, λ) when µ ↑ ∞,

Rµ(A, λ)
g→ A(A, λ) when µ ↓ 0

?
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Thank You Very Much!
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